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Accurate spatial data on soil property distribution is crucial for monitoring of land
resources, informed management practices, and robust environmental modeling,
especially in arid and semi-arid regions. This study aimed to develop a spatial prediction
model for soil salinity in the Meymeh Plain, Dehloran Province. The Random Forest
(RF) algorithm was employed to investigate spatial variations in soil salinity within the
surface (0—30 cm) and subsurface (30-60 cm) soil layers. Soil samples were collected
from 100 sites, analyzed for electrical conductivity (EC), and the spatial variability of
soil salinity was modeled using random forest (RF) analysis. Seven environmental
variables of Greenery, Diffuse Radiation, Valley Bottom Flatness Index, Normalized
Difference Vegetation Index, Salinity Index, Wind Direction Index, and Brightness were
selected based on the Variance Inflation Factor, including parameters from a digital
elevation model and Sentinel-2 satellite reflectance data. The model used 80% of the
data for calibration and 20% for validation, with performance assessed through root
mean square error (RMSE), coefficient of determination (R?), and concordance
correlation coefficient (CCC). The RF model showed high prediction accuracy for
surface EC and relatively acceptable results for subsurface layers. The R? for the surface
layer was 0.92, and for the subsurface layer was 0.37; the RMSE for the surface and
subsurface layers was 0.22; and the CCC for the surface layer was 0.82 and for the
subsurface layer was 0.97. Overall, topographic derivatives demonstrated a greater
influence on predicting soil salinity in both surface and subsurface layers compared to
remote sensing data. The multi-resolution valley bottom flatness index with high spatial
resolution was identified as the most important predictor of soil salinity, highlighting the
impact of topographic factors in the study area.
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EXTENDED ABSTRACT

Intoduction: High-resolution spatial information on the distribution of soil properties plays a vital role in accurately
monitoring land resources, making informed decisions for land use management, and building reliable environmental
models. Such detailed data not only enhances our understanding of soil variability and health but also underpins essential
ecohydrological processes that influence vegetation dynamics, water retention, and nutrient cycling. These insights are
crucial for the development of sustainable land management strategies, especially in the context of increasing
environmental stresses such as climate change, land degradation, and desertification. In particular, regions characterized
by arid and semi-arid climates face unique challenges, including limited water availability and a higher susceptibility to
salinization. Soil salinity, one of the most widespread forms of land degradation in dryland regions, negatively affects
agricultural productivity, soil structure, and long-term land usability. Addressing this issue requires a deep understanding
of the spatial variability of salinity across different soil layers and depths. Accurate prediction and mapping of soil salinity
can guide targeted intervention strategies, optimize land use practices, and support effective resource allocation to mitigate
the adverse effects on crop yields and ecosystem services. This study aimed to develop a robust spatial prediction model
of soil salinity for the Miameh Plain in Dehloran County, a region that exemplifies the environmental and agricultural
challenges common in arid landscapes. By leveraging advanced geospatial techniques and machine learning methods,
specifically the Random Forest (RF) model, the research sought to generate high-resolution salinity maps for both surface
and subsurface soil layers. These maps provide valuable insights into the distribution and severity of soil salinity, which
are essential for implementing site-specific soil management practices and planning long-term mitigation efforts.

Methodology: The study area is located in southwestern Iran, about 7 kilometers from Dehloran city in southeastern Ilam
Province. It spans geographic coordinates from 32°33'22.32" to 32°40'21.33" N latitude and 47°15'38.89" to 47°10'22.54"
E longitude. Elevation ranges from 124 to 167 meters above sea level, covering approximately 3,000 hectares. Land
slopes range from 0 to 5%, with most areas between 0 and 1%. The terrain is primarily oriented southward and eastward.
The region has a Ustic moisture regime and a Hyperthermic temperature regime. Soil profiles feature an Ochric surface
horizon and subsurface Cambic, Calcic, and Gypsic horizons. This study aimed to develop a spatial prediction model for
soil salinity in the Meymeh Plain using the Random Forest (RF) machine learning algorithm. Soil samples were collected
from 100 sites at two depths (0-30 cm and 30—60 cm) and analyzed for electrical conductivity (EC). The RF model was
used to map spatial variations in EC across both layers. Seven environmental variables were selected to support the model,
including indices such as Greenery, Diffuse Radiation, Valley Bottom Flatness, NDVI, Salinity Index, Wind Direction
Index, and Brightness. These variables were derived from a digital elevation model (DEM) and Sentinel-2 satellite
reflectance data and selected based on the Variance Inflation Factor (VIF) to reduce multicollinearity. The dataset was
split into two subsets: 80% for model calibration and 20% for validation. Model performance was assessed using root
mean square error (RMSE), coefficient of determination (R?), and concordance correlation coefficient (CCC). All
modeling was conducted using RStudio software.

Findings: The Random Forest (RF) model demonstrated strong predictive performance for soil electrical conductivity
(EC) in the surface layer, with a coefficient of determination (R?) of 0.80, indicating a high level of model accuracy. In
contrast, its performance for the subsurface layer was more moderate, yielding an R? value of 0.37, which reflects a
reduced but still informative level of predictability at greater soil depths. The root mean square error (RMSE) was 0.22
for both surface and subsurface layers. In terms of model agreement, the concordance correlation coefficient (CCC)
further supported the disparity in performance between layers. The CCC for the surface layer was 0.92, denoting excellent
agreement between observed and predicted values. However, the CCC for the subsurface layer dropped significantly to
0.97, indicating a much weaker correspondence in predictions for deeper soil strata. Among the suite of predictor variables
used, topographic derivatives emerged as more influential in predicting soil salinity than remote sensing indices. Notably,
the multi-resolution valley bottom flatness (MRVBF) index, derived from digital elevation data, was identified as the
most important predictor across both soil layers. This emphasizes the significant role that landscape position and terrain-
driven water accumulation play in controlling spatial patterns of salinity, particularly in arid environments.

Conclusion: The study highlights the effectiveness of the RF model in predicting surface soil salinity with high accuracy,
while its performance in subsurface layers remains moderate and suggests the need for further refinement or integration
of additional predictors at depth. The findings underscore the critical influence of topographic variables, especially the
MRVBF index, in governing the spatial distribution of soil salinity in the Miameh Plain. This suggests that terrain-based
modeling offers valuable insights for soil salinity assessment, particularly in arid and semi-arid landscapes where
topography strongly influences hydrological and salinization processes. These results provide a valuable foundation for
site-specific soil management and salinity mitigation strategies in similar dryland regions.
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