Mohammad Gholami; Majid Kazemzadeh
Abstract
The inappropriate utilization of water resources has led to water shortages and numerous challenges for humanity. Assessing water scarcity can significantly contribute to sustainable water resource management. The Water Poverty Index (WPI), as a composite tool, assesses the factors affecting the water ...
Read More
The inappropriate utilization of water resources has led to water shortages and numerous challenges for humanity. Assessing water scarcity can significantly contribute to sustainable water resource management. The Water Poverty Index (WPI), as a composite tool, assesses the factors affecting the water condition in a specific area using five critical criteria: Resources, Access, Capacity, Use, and Environment. in the present study, Razavi Khorasan province was divided into 22 study areas, then the water poverty index was used to assess the water scarcity in each of them. WPI results revealed that the Darghz study area scored 50.63, indicating the best water condition, while the Kashmir study area, Red Mountain, and Khalilabad had the worst water conditions, scoring 20/20 compared to other regions. The average of WPI for the entire province was 34.41, indicating an unfavorable state of water scarcity in this region. The average values for the five criteria—resources, access, capacity, consumption, and environment—across the entire province were 19.41, 36.35, 31.23, 38.06, and 47.05, respectively, that according to Use and Resource criteria, water utilization in this province exceeds available water resources by a factor of 1.96. According to this, overexploitation of water resources, particularly in the agricultural sector, and neglecting sustainable development and resilience thresholds of natural ecosystems were identified as significant management strategic mistakes contributing to water scarcity in this province. Therefore, make a balance between water utilization and available resources, allocating a portion of water for the natural ecosystems requirements, and reducing economic reliance on agriculture, can serves as a roadmap for water resources management to effective water resource management and prevent further deterioration of the current situation.
majid kazemzadeh; arash malekian
Abstract
One of the most important dynamic ecosystems is river, awareness of spatio-temporal water quality changes of which is necessary. In this research, we studied the spatiotemporal water quality changes using three techniques of Cluster analysis (CA), Discriminant analysis (DA) and Principal Component analysis ...
Read More
One of the most important dynamic ecosystems is river, awareness of spatio-temporal water quality changes of which is necessary. In this research, we studied the spatiotemporal water quality changes using three techniques of Cluster analysis (CA), Discriminant analysis (DA) and Principal Component analysis (PCA) in the Aji-Chai watershed over 1981-2010. Applying clustering, we identified three homogeneities clusters. Stations which were labeled in the first cluster showed that they are located in the upstream of Aji-Chi River. In comparison with other stations, these stations showed better water quality and the lowest changeability. DA methods significantly determined the three functions which described about 73.50, 20.30 and 3.40% of total variances. In the other word, in general three functions described the 97.20% of the total variances. Also the DA methods revealed the HCO-3, SAR, Na+, SO42- and Ca2+ were the most important parameters affecting upon water quality, based on which it's possible to seperate homogenous clusters. Finally, the results of PCA showed that the first two factors were the most important factors of water quality changes in the Aji-Chai River Watershed. These factors described about 78.75 and 14.71% of the variances, respectively.