mahshid souri; alireza eftekhari; Zhila Ghorbani; nadia kamali
Abstract
Soil is the most important component of rangeland ecosystems and by preserving it and its characteristics, In the present study, the amount of potassium and phosphorus in the soil of Ghoshchi rangelands of Urmia located in West Azerbaijan province from 2019 to 2021 under the influence of grazing and ...
Read More
Soil is the most important component of rangeland ecosystems and by preserving it and its characteristics, In the present study, the amount of potassium and phosphorus in the soil of Ghoshchi rangelands of Urmia located in West Azerbaijan province from 2019 to 2021 under the influence of grazing and grazing conditions was investigated. In addition, the development and evaluation of an adaptive fuzzy-neural inference model (ANFIS) was presented in order to predict the amount of potassium and phosphorus in the soil and compare its results with the regression model. The mean squared error (RMSE) and the coefficient of explanation (R2) were used to evaluate the regression and inference models. The results of analysis of variance showed that different years and conditions under confinement and grazing had a significant effect on the amount of potassium and phosphorus in the soil, but their interaction was meaningless. The highest amount of soil potassium is related to the year 2021 and the conditions under grazing. While the highest amount of soil phosphorus was related to 2020. In the phosphorus factor modeling section, the ANFIS model with higher accuracy (R2 = 59.5) and less error (RMSE = 0.087) than the regression model (R2=0.38) with more error (RMSE = 0.089) was able to determine the amount of P to predict. Regarding potassium factor, ANFIS model with higher accuracy (R2 = 0.62 and less error (RMSE = 0.017) than regression model (R2 = 0.42) with more error (RMSE = 0.097) was able to measure soil potassium.
Zhila Ghorbani; Kiomars Sefidi; Farshad Keivan Behjou; Mehdi Moameri; Ali Ashraf Soltani Tolarod
Abstract
The most current way for measuring the soil fragmentation is determination of mean weight diameter (MWD). In this study, the adaptive neuro-fuzzy inference system (ANFIS) was used to predict of range soil fragmentation affected by different grazing intensities, distance from village and sampling depth. ...
Read More
The most current way for measuring the soil fragmentation is determination of mean weight diameter (MWD). In this study, the adaptive neuro-fuzzy inference system (ANFIS) was used to predict of range soil fragmentation affected by different grazing intensities, distance from village and sampling depth. Present study conducted at 2015 in 3 adjacent rural areas (Alvars, Aldashin and Asbe marz) in Darvishchai watershed in Ardabil County. The studied parameters on the soil fragmentation including different grazing intensities in 3 levels (low, medium and high intensity), distance from village in 3 levels (200, 400 and 600 meters) and the soil sampling depths in 2 levels (0-15cm and 15-30cm). Obtained data were transferred to MATLAB software for the development of ANFIS models. For evaluating the models operation, mean squares error (MSE) and correlation (R2) were used. The result of best ANFIS model in prediction of soil fragmentation was compared with results of regression model. The results show that different grazing intensities, distance from village, sampling depth and their combinations had significant effect on the soil fragmentation. Increase of grazing intensity resulted in increment of soil fragmentation. With increment the distance from village from 200 to 400 meters, soil fragmentation decreased but with increment of distance, increased. Soil fragmentation in all conditions was higher at depth of 0-15 cm than depth of 15-30 cm. ANFIS model had more precision in prediction of soil fragmentation (R2=0.96) relative to regression model (R2=0.76).