نشریه علمی - پژوهشی مرتع و آبخیزداری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی منابع طبیعی، پردیس دانشگاهی قشم، دانشگاه هرمزگان، بندرعباس، ایران.

2 استادیار گروه مهندسی منابع طبیعی، دانشکده کشاورزی و منابع طبیعی دانشگاه هرمزگان، بندرعباس

3 دانشیار بخش علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران

4 دانشیار گروه مهندسی منابع طبیعی، دانشکده کشاورزی و منابع طبیعی دانشگاه هرمزگان، بندرعباس، ایران

5 استادیار گروه مهندسی منابع طبیعی، دانشکده کشاورزی و منابع طبیعی دانشگاه هرمزگان، بندرعباس، ایران

10.22059/jrwm.2022.346190.1673

چکیده

منبع اصلی آب دشت ارسنجان آب زیرزمینی بوده که در گذشته با کاریز و اکنون با چاه‌های پرشمار در حال بهره‌برداری است. برای آگاهی از شرایط کیفی این منابع، روش‌های تحلیل آماری چندمتغیره و میان‌یابی در سه سال با بارندگی متفاوت به کار گرفته شد. تحلیل عاملی شاخص‌های کلیدی کیفیت آب زیرزمینی را تعیین نمود و نقشه‌سازی با روش‌های میان‌یابی انجام شد. نقشه‌های تولید شده با استفاده از روش بهینه‌سازی جنک طبقه‌بندی و مساحت هر طبقه در هر سال محاسبه شد. بر اساس نتایج تحلیل عاملی، هدایت الکتریکی (EC)، سختی کل (TH) و غلظت سدیم به ترتیب با بار عاملی ۸۴۳/۰، ۸۸۹/۰ و ۹۹۱/۰ انتخاب شدند. روش میان‌یابی RBF برای پارامتر سدیم، در هر سه سال مورد مطالعه مناسب بود. برای پارامترهای قابلیت هدایت الکتریکی و سختی کل در سال‌های ۱۳۹۴ و ۹۵ روش RBF-MQ و در سال 1397 روش LIP کمترین خطا را داشتند. نقشه‌سازی تغییرات مکانی سه پارامتر یاد شده نشان داد در سال 1395 که بارندگی کمتر از میانگین بوده، مساحت مناطق با مقادیر کم کاهش یافته است. پارامتر غلظت سدیم بدلیل کمیت و کیفیت تغییرات آن پتانسیل مناسبی برای کاربرد به عنوان نشانگر تغییرات کیفیت آب زیرزمینی در پاسخ به عوامل اقلیمی یاا مدیریتی دارد. به طور کلی پیشنهاد می‌شود در تحلیل کیفیت آب زیرزمینی دشت ارسنجان، عامل مجاورت با دریاچه شور بختگان، علاوه بر عوامل مرتبط با اقلیم و حوزه آبخیز باید در نظر گرفته شود.

کلیدواژه‌ها

عنوان مقاله [English]

Factor analysis and zoning of qualitative parameters of groundwater resources in Arsanjan Plain, Fars Province

نویسندگان [English]

  • Bahman Kavari 1
  • Yahya Esmaeilpour 2
  • Ali Akbar Mousavi 3
  • Ommolbanin Bazrafshan 4
  • Arashk Holisaz 5

1 Ph.D candidate, Natural Resources Department, Qeshm University Campus, University of Hormozgan, Bandar Abbas, Iran.

2 Assistant Professor, Department of Natural Resources Engineering, Faculty of Agriculture and Natural Resources, University of Hormozgan, Bandar Abbas

3 Associate Professor, Soil Science Department, Agricultural College, Shiraz University, Shiraz, Iran,

4 Associate Professor, Department of Natural Resources Engineering, Faculty of Agriculture and Natural Resources, University of Hormozgan, Bandar Abbas, Iran

5 Assistant Professor, Department of Natural Resources Engineering, Faculty of Agriculture and Natural Resources, University of Hormozgan, Bandar Abbas, Iran

چکیده [English]

The main source of water in the Arsanjan plain is underground water, which has been exploited in the past with Aqueduct and now with numerous wells. For knowing about the quality conditions of these sources; multivariate statistical analysis and interpolation methods were used in three years with different rainfall. Factor analysis determined the key indicators of underground water quality and mapping was done with interpolation methods. The maps were classified using the Jenks optimization method of classification and the area of each class in each year calculated. Based on the results of factor analysis, EC, TH and Sodium concentration were selected with factor loadings of 0.843, 0.889 and 0.991, respectively. The RBF interpolation method for the sodium parameter was suitable in all three years of the study. For parameters of EC and TH, RBF-MQ method and LIP method had the least error in 2014 and 2015. Mapping spatial changes of the three mentioned parameters showed that in 2015, when the rainfall was lower than the average, the area of the regions with low values decreased. Due to the quantity and quality of its changes, sodium concentration parameter has a good potential to be used as an indicator of changes of the quality of underground water in response to climatic or management factors. In general, it is suggested that in assessment of the groundwater quality of Arsanjan Plain, the proximity factor to Bakhtegan Salt Lake, in addition to factors related to climate and watershed, should be considered.

کلیدواژه‌ها [English]

  • Total Hardness
  • Sodium Concentration
  • Electrical Conductivity
  • Interpolation
  • Kriging
  • Aguilar, F. J., Agüera, F., Aguilar, M. A., and Carvajal, F. (2005). Effects of terrain morphology, sampling density, and interpolation methods on grid DEM accuracy. Photogrammetric Engineering & Remote Sensing, 71(7), 805-816.
  • Alizadeh, A. (2014). Principles of applied hydrology. Imam Reza University press.
  • Azhdari, Z., and Hosseini, S. (2018). Spatial variations of groundwater quality parameters using geo-statistics (Case study: Segsi Plain, Isfahan). Journal of Environmental Science and Technology, 20(3), 63-80. Doi: 10.22034/jest.2018.13256.
  • Bagheri Bodaghabadi, M. (2018). Is it necessarily a normally distributed data for kriging? A case study: soil salinity map of Ghahab area, central Iran. Desert, 23(2), 284-293.
  • Bahrami, H., Waqarfard, H., Malekian, A., Gholami, H., and Tahmasabi, P. (2019). Homogenization of watersheds with an integrated approach GIS and multivariate statistical analysis, case study: Karoon Watershed. Watershed Engineering and Management, 11(1), 180-192. Doi: 10.22092/ijwmse.2019.118431.
  • Biglari, H., Saeidi, M., Karimyan, K., Narooie, M.R., and Sharafi. H. (2018). Data for factor analysis of hydro-geochemical characteristics of groundwater resources in Iranshahr. Data in Brief, 19:548–63. doi: 10.1016/J.DIB.2018.05.039.
  • Brewer, C. A., and Pickle, L. (2002). Evaluation of methods for classifying epidemiological data on choropleth maps in series. Annals of the Association of American Geographers, 92(4), 662-681.‏
  • Chin, D. A. (2012). Water-quality engineering in natural systems: fate and transport processes in the water environment. John Wiley & Sons.
  • Elubid, B., Huang, T., Ahmed, E. H., Zhao, J., Elhag, K. M., Abbass, W., and Babiker, M. M. (2019). Geospatial distributions of groundwater quality in Gedaref State using geographic information system (GIS) and drinking water quality index (DWQI). International journal of environmental research and public health, 16(5), 731.‏
  • Esfandiari, F., GhorbaniFilabadi, R., NasiriKhiavi, A., and Mostafazadeh, R. (2019). Assessing the accuracy of algebraic and geostatistical techniques to determine the spatial variations of groundwater quality in Boroojen Plain. Journal of Natural Environmental Hazards, 8(20), 115-130. doi: 10.22111/jneh.2018.22500.1335
  • Ghamarnia, H. and Roshandel, F., (2019). Assessment of Groundwater Quality in Chardoley Plain Located in Kurdistan Province. Water Resources Engineering, 12(41), 145-160.
  • Ghandali, M., Shayesteh, K., and SadiMesgari, M. (2019). Groundwater quality zoning for agricultural and drinking usage using water quality index and geostatistics techniques in Semnan watershed. JWSS-Isfahan University of Technology, 23(1), 187-198.
  • Guo, Q., Li, W., Yu, H., and Alvarez, O. (2010). Effects of topographic variability and lidar sampling density on several DEM interpolation methods. Photogrammetric Engineering & Remote Sensing, 76(6), 701-712.‏
  • Guo, X., Zuo, R., Meng, L., Wang, J., Teng, Y., Liu, X., and Chen, M. (2018). Seasonal and spatial variability of anthropogenic and natural factors influencing groundwater quality based on source apportionment. International Journal of Environmental Research and Public Health, 15(2), 279.‏
  • Halabian, A., and Asgari, S. (2017). Flood Hazard Intensity Zoning in Myshkhas Watershed Using Factor- Cluster Analysis. Hydrogeomorphology, 4(12), 153-177.
  • Hatami, F., and Parvizi, M., (2014). Investigating the impact of groundwater level reduction on land settlement (case study: Arsanjan Plain), the 4th National Conference on New Materials and Structures in Civil Engineering, University of Yasouj.
  • Howladar, M. F., Al Numanbakth, M., and Faruque, M. O. (2018). An application of Water Quality Index (WQI) and multivariate statistics to evaluate the water quality around Maddhapara Granite Mining Industrial Area, Dinajpur, Bangladesh. Environmental Systems Research, 6(1), 1-18.‏
  • Isaak, E. H., and Serivaster, R. M. (1989). An Introduction to Applied Geostatistical, 561p. Oxford: Oxford University Press.
  • Johnston, K., VerHoef, J. M., Krivoruchko, K., and Lucas, N. (2001). Using ArcGIS geostatistical analyst (Vol. 380). Redlands: Esri.
  • Khaleghi, Fazel, and Mosayebzadeh, Naser, (2022). Hydro chemical study of water wells in Bonab and Malekan cities with the aim of evaluating groundwater quality, an environmental geology approach. Hydrogeology, 6(2):52–66. doi: 10.22034/HYDRO.2022.12701.
  • Kitanidis, P. K. (1997). Introduction to geo-statistics: applications in hydrogeology. Cambridge university press.
  • Li, D. and Sh. Liu. 2019. Water Quality Monitoring and Management: Basis, Technology and Case Studies, Chapter 11–Groundwater Quality Detection. 269-302.
  • Li, J., and Heap, A. D. (2014). Spatial interpolation methods applied in the environmental sciences: A review. Environmental Modelling and Software, 53, 173-189.‏
  • Lindsay, E. (2004). The Lindsay Leg Club® Model: a model for evidence-based leg ulcer management. British journal of community nursing, 9(Sup2), 15-20.
  • Maghami, Y., Ghazavi, R., Vali, A. A. and Sharafi. S. (2011). Evaluation of Spatial Interpolation Methods for Water Quality Zoning Using GIS Case Study, Abadeh Township. Geography and Environmental Planning, 22(2):171–82.
  • Malekian, A., Razandi, Y., Kalighi, S., and Farokhzadeh, B. (2016). Assessment of temporal and spatial changes of groundwater quality using hybrid Boolean, Fuzzy and Geostatistical (Case study: Varamin plain). Applied Field Crops Research, 29(1), 126-135.
  • Meshram, S. G., and Sharma, S. K. (2017). Prioritization of watershed through morphometric parameters: a PCA-based approach. Applied Water Science, 7(3), 1505-1519.
  • Mohammadyari, F., Aghdar, H., and Basiri, R. (2017). Zoning groundwater quality for drinking using geo-statistical methods Case Study: Arid Regions in Mehran and Dehloran. Scientific- Research Quarterly of Geographical Data (SEPEHR), 26(101), 199-208. doi: 10.22131/sepehr.2017.25737.
  • Mousavi, A., Solaimani, K., Shokrian, F., and Roshan, S. (2020). Investigation of spatio-temporal variation in groundwater resource quality using geo-statistical methods (Case Study: Lordegan Plain, Chaharmahal and Bakhteyari Province). Irrigation and Water Engineering, 10(3), 262-275. doi: 10.22125/iwe.2020.107108.
  • Nadiri, A., Shakur, S., Asghari Moghadam, A., and Vadiati, M. (2015). Investigation of Groundwater Nitrate Pollution with Different Interpolation Methods (Case Study: East Azarbayjan, Bilverdy Plain). Hydrogeomorphology, 1(1), 75-92.
  • Najafpour, N., TorabiPudeh, H., and Yonesi, H. A. (2018). Evaluation of GIS and interpolation methods in determination of spatial distribution and classified groundwater quality. Iran-Water Resources Research, 14(1), 257-262.
  • Pirzadeh, B., and Asvar, T. (2020). Determining Spatial and Temporal Variations of Groundwater Quality Parameters Using GIS and Interpolation Methods (Case Study: Sirjan Plain). Irrigation and Water Engineering, 11(2), 266-275. doi: 10.22125/iwe.2020.120736.
  • Ren, X., Peiyue, L., Xiaodong, H., Fengmei, S., and Vetrimurugan, E. (2020). Hydrogeochemical processes affecting groundwater chemistry in the central part of the guanzhong basin, china. Archives of Environmental Contamination and Toxicology, 80:1 80(1):74–91. doi: 10.1007/S00244-020-00772-5.
  • Rodrigues, M. S., Alves, D. C., de Souza, V. C., de Melo, A. C., and do Nascimento Lima, A. M. (2018). Spatial interpolation techniques for site-specific irrigation management in a mango orchard. Comunicata Scientiae, 9(1), 93-101.‏
  • Roodgar Iraee, R., Gholami Sefidkohi, M. A., and Palangi, J. A. (2019). Comparison of Deterministic and Geomorphic Methods for Determining Spatial Variations of Nitrate in Ghaemshahr-Juybar Plan. Journal of Watershed Management Research, 10(20), 158-167.‏
  • Sadeghfam, S., Hassanzadeh, Y., Nadiri, A. A., and Khatibi, R. (2016). Mapping groundwater potential field using catastrophe fuzzy membership functions and Jenks optimization method: a case study of Maragheh-Bonab plain, Iran. Environmental Earth Sciences, 75(7), 1-19.‏
  • Salam, M. A., Adlii, A., Eid, M. H., and Abukhadra, M. R. (2021). Effective decontamination of Ca2+ and Mg2+ hardness from groundwater using innovative muscovite based sodalite in batch and fixed-bed column studies; dynamic and equilibrium studies. Journal of Contaminant Hydrology, 241, 103817.‏ ‏
  • Sajjadi, S., Delsouz, M., Zolfaghari, G., Mir Mohammadi, M., and Adab, H. (2019). Evaluatin of Deterministic and Geostatistics Methods for Particulate Matter Concentration (PM2.5 and PM10) Zoning Using GIS: case study, Sabzevar City. Journal of Environmental Science and Technology, 21(10), 1-13. doi: 10.22034/jest.2018.22358.3143.
  • Salehi, H., and Zeinivand, H. (2014). Assessing groundwater quality and selection of the most appropriate spatial interpolation method (Case study: West of Marivan city, Iran). Iranian journal of Ecohydrology, 1(3), 153-166. doi: 10.22059/ije.2014.54218.
  • Salehi, H., Zeinivand, H., and Ahmadi, S. (2017). Groundwater quality assessment and selecting the most appropriate interpolation method using GIS (Case study: Saghez city, Iran). Journal of wetland ecobiology 9(32), 5-18.
  • Selvam, S., Jesuraja, K., Venkatramanan, S., Chung, S. Y., Roy, P. D., Muthukumar, P., and Kumar, M. (2020). Imprints of pandemic lockdown on subsurface water quality in the coastal industrial city of Tuticorin, South India: A revival perspective. Science of the Total Environment, 738, 139848.‏
  • Selvam, S., Manimaran, G., Sivasubramanian, P., Balasubramanian, N., and Seshunarayana, T. (2014). GIS-based Evaluation of Water Quality Index of groundwater resources around Tuticorin coastal city, south India. Environmental Earth Sciences, 71(6), 2847–2867. https://doi.org/10.1007/s12665-013-2662-y.
  • ShewikLou, A.R., (2018). Analyses of sensory evaluation data using Principal Component Analysis (PCA). FSCT. 2018; 15 (80) :361-377, URL: http://fsct.modares.ac.ir/article-7-20344-en.html
  • Tabandeh, S. M., Kholghi, M., and Hosseini, S. A. (2020). Comparison of Interpolation Methods for Groundwater Quality Assessment Based on Hydrogeological Characteristics of Shallow Aquifers (Case Study: Babol-Amol Aquifer). Iranian Journal of Soil and Water Research.
  • Tabatabaei, S. H., and Ghazali, M. (2011). Accuracy of interpolation methods in estimating the groundwater level (case study: Farsan-Jooneghan and Sefiddasht aquifers). Journal of Science and Technology of Agriculture and Natural Resources, 15(57 (B)), 11-22.
  • Teimouri, M., and Asadi Nalivan, O. (2021). Assessing the impact of land use and geology on groundwater quality using multivariate statistical models and geostatistical analyses (Case Study: Part of the Hable-Rood River Basin). Hydrogeomorphology, 7(25), 38-19. doi: 10.22034/hyd.2021.10944.
  • Umana, I. M., Neji, P. A., and Agwupuye, J. A. (2022). Assessment of underground water quality in Okobo local government area of Akwa Ibom State, Nigeria. Applied Water Science, 12(5), 1-12.‏
  • Vijith, H., and Satheesh, R. (2007). Geographical Information System based assessment of spatiotemporal characteristics of groundwater quality of upland sub-watersheds of Meenachil River, parts of Western Ghats, Kottayam District, Kerala, India. Environmental Geology, 53(1), 1-9.‏
  • Wu, J., Li, P., Wang, D., Ren, X., and Wei, M. (2019). Statistical and multivariate statistical techniques to trace the sources and affecting factors of groundwater pollution in a rapidly growing city on the Chinese Loess Plateau. Human and Ecological Risk Assessment: An International Journal.
  • Xiang, W., Zhang, R., Liu, G., Wang, X., Mao, W., Zhang, B., Cai, J., Bao, J., and Fu, Y. (2022). Extraction and analysis of saline soil deformation in the Qarhan Salt Lake region (in Qinghai, China) by the sentinel SBAS-InSAR technique. Geodesy and Geodynamics, 13(2), 127–137.
  • Zare Chahuki, M.A. (2010). Data analysis in natural resources research using SPSS software. First edition. Jahad University press. 309 P.
  • Zhou, Y., Li, P., Xue, L., Dong, Z., and Li, D. (2020). Solute geochemistry and groundwater quality for drinking and irrigation purposes: a case study in Xinle City, North China. Geochemistry, 80(4), 125609.
  • Zolekar, R. B., Todmal, R. S., Bhagat, V. S., Bhailume, S. A., Korade, M. S., and Das, S. (2020). Hydro-chemical characterization and geospatial analysis of groundwater for drinking and agricultural usage in Nashik district in Maharashtra, India. Environment, Development and Sustainability 2020 23:3, 23(3), 4433–4452.