Nasrin Beiranvand; Alireza Sepahvand; Ali Haghizadeh
Abstract
In this study, five soft computing techniques, GP-PUK, GP-RBF, M5P, REEP Tree and RF were used to predict the SL in Cham Anjir, Bahram Joo, Kaka Reza and Sarab Syed Ali hydrometry stations in Khorramabad, Biranshahr and Alashtar sub-watersheds, Lorestan province. Total data set consists of rain, discharge ...
Read More
In this study, five soft computing techniques, GP-PUK, GP-RBF, M5P, REEP Tree and RF were used to predict the SL in Cham Anjir, Bahram Joo, Kaka Reza and Sarab Syed Ali hydrometry stations in Khorramabad, Biranshahr and Alashtar sub-watersheds, Lorestan province. Total data set consists of rain, discharge and solute load (SL) of three sub-watersheds out of which 70% data used to training and 30% data were used to testing phase. Finally, the models’ accuracy was assessed using three performance evaluation parameters, which were Correlation Coefficient (C.C.), Root Mean Square Error (RMSE) and Maximum Absolute Error (MAE). Results suggest that GP-PUK and GP-RBF models works well than other modeling approaches in estimating the SL in low and high water-periods. The result showed that, In the high-water period, in Cham Anjir, Sarab Said Ali and Kaka Reza stations the GP-RBF model and in the Bahram Joo station the GP-PUK model with the highest C.C and the lowest error were selected the optimal models in estimating the SL. Also, in the low water period, result shown that in Cham Anjir, Sarab Said Ali and Bahram Joo stations the GP-RBF model and in the Kaka Reza station the GP-PUK model were the best models in estimating the SL. Therefore, these models can be used to estimate the solute load of nearby rivers by/without hydrometry station for the management of the quantity and quality of surface water.
Asghar Rahmani; Fereydoon Sarmadian; Sayed Roholla Mousavi; Seyyed Erfan Khamoshi
Abstract
Conventional soil mapping is related to High density sampling, affected by scale and expert knowledge So using of new data mining methods in digital soil properties mapping was the main aim of this study for resolving conventional soil survey problems. In this research, 62 surface soil samples based ...
Read More
Conventional soil mapping is related to High density sampling, affected by scale and expert knowledge So using of new data mining methods in digital soil properties mapping was the main aim of this study for resolving conventional soil survey problems. In this research, 62 surface soil samples based on regular grid and expert knowledge opinion were selected after that soil organic carbon(SOC), clay content and CaCO3 were determined in some part of Dryland Kuhin region with area of 372 ha. Data sets were divided to two 80%(calibration) and 20%(validation), respectively. From digital elevation model with 10-meter spatial resolution were derived 19 geomorphometric attribute in SAGA GIS software. Three geomorphometric covariate included TPI, TRI, DEM and landform map unit were chosen PCA and expert knowledge. RStudio and SoLIM Solution software were used for random forest (RF) and fuzzy logic modelling, respectively. The RF modelling results show that for SOC, clay and CaCO3 based on determination coefficient (R2) had 0.63,0.75,0.63 and RMSE 0.17,7.5,5.77 percentage and for SoLIM method revealed that R2 0.47,0.42,0.42 and RMSE 0.2,8.08,4.68 percentage, respectively. Generally, the RF model with creating nonlinear relationship among soil properties and environmental covariate can predicted digital map with appropriate precision for management and sustainable land utilization
Mehrnaz Neyestani; Fereydoon Sarmadian; Azam Jafari; Ali Keshavarzi
Abstract
In digital soil mapping, soil characteristic and classes could be extracted truly by numerical and quantitative modelling. Hence, derived rules could be fitted to similar regions for achieving ruled relations on areas without soil information which is called as extrapolation. In the present study, achieving ...
Read More
In digital soil mapping, soil characteristic and classes could be extracted truly by numerical and quantitative modelling. Hence, derived rules could be fitted to similar regions for achieving ruled relations on areas without soil information which is called as extrapolation. In the present study, achieving digital soil class map of an area without adequate soil information by Random forest was tested by extrapolation at great group level. The results show overall accuracy 88% and kappa 0.77 of donor area which is able to fit over its similar region. Results of extrapolation show overall accuracy 81% and kappa 0.61 of recipient area which could show logical concordance to produce soil class map of recipient area without applying related soil samples of this area in short time and low cost. Since, extrapolation could be as an efficient way to predict soil classes of unknown areas.
Mohammad Taghi avand; Saeed Janizadeh; Mohsen Farzin
Abstract
Increasing population and agricultural development need dramatically water resources groundwater resources, therefore, are increasingly being considered, especially in arid and semi-arid regions. Aim of this research is mapping potential of groundwater resources on Yasouj-Sisakht region using data mining ...
Read More
Increasing population and agricultural development need dramatically water resources groundwater resources, therefore, are increasingly being considered, especially in arid and semi-arid regions. Aim of this research is mapping potential of groundwater resources on Yasouj-Sisakht region using data mining method Random Forest (RF) and Generalized Linear Statistical Model (GLM). For this purpose. For this purpose, information layers including slope, slope direction, slope length, aspect, topographic wetness index (TWI), distance from fault, distance from the stream, rainfall, land use, lithology, topographic position index (TPI) and stream power index (SPI) as the main factors influencing groundwater potential were identified and developed in ArcGIS and SAGAGIS software. From the distribution of 263 springs in the area, 70% (253 springs) were used as educational springs and 30% (109 springs) were used as experimental springs. The results showed that the level of underground water with low, medium, high and very high potential in the map of the random forest was 37.78, 22.22, 18.89 and 21.11%, respectively, and in the generalization linear model were 14.49, 32.04, 31.11 and 22.36%, respectively. Moreover, Sensitivity Analysis show that the factors affecting both methods are rainfall, altitude and distance from the fault factors. The accuracy of the data mining models used in this research was also evaluated using a relative performance curve (ROC). The area under curve (AUC) for both RF and GLM models is 92% and 65%, respectively. The accuracy of RF model, therefore, mapping groundwater potential in the study area is more than GLM model.
hossein norouzi; ataallah nadiri
Abstract
123
Groundwater system studies to understanding its behavior, requires the exploratory drilling wells, pumping test and geophysical experiments, which can carried out with most cost. For this reason, simulation of groundwater flows by mathematical and computer models, which is an indirect method to ...
Read More
123
Groundwater system studies to understanding its behavior, requires the exploratory drilling wells, pumping test and geophysical experiments, which can carried out with most cost. For this reason, simulation of groundwater flows by mathematical and computer models, which is an indirect method to groundwater studies, is being spent a few costs. In this research, the efficiency of artificial neural network, fuzzy logic and random forest models has been investigated in groundwater level estimation of Boukan plain. Parameters of precipitation, temperature, flow rate and water level within time period of the previous month were used as input and the water table in each period were selected as output through monthly scale (2006-2017). To evaluating the performance of models, Correlation coefficient, root mean square error and coefficient of mean absolute error were used. The results showed that the Fuzzy Logic and Random Forest models are able to estimate water levels with acceptable accuracy. In terms of accuracy, fuzzy logic model with the highest correlation coefficient (0.96), lowest root mean square error (0.068 m0) and mean absolute error (0.056 m) was recognized as a best the model in the groundwater level prediction.