Document Type : Research Paper
Authors
1 Department of Soil Science and Engineering, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
2 Department of Soil Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
3 Department of Geosciences, Soil Science and Geomorphology, University of Tübingen, Tübingen, Germany.
Abstract
Surface soil saturated hydraulic conductivity (Ks), as one of the most important physical properties of soil, plays a key role in the distribution of water and nutrients within the soil environment and holds particular significance in water and soil resource management. This study aimed to digitally model Ks using machine learning approaches in the Kilanah watershed, located in Kurdistan Province, covering an area of 12,000 hectares. Three machine learning algorithms, including Gradient Boosted Decision Tree (XGBoost), Random Forest (RF), and k-Nearest Neighbors (k-NN), were utilized, incorporating various environmental variables derived from the digital elevation model and Sentinel-2 satellite imagery. These variables included distance from the drainage channel, valley depth, relative slope position, channel base level, brightness index, wind effect index, Normalized Difference Vegetation Index (NDVI), Band 12, greenness index, and surface curvature. Additionally, soil parameters such as organic matter, lime content, bulk density, geometric mean particle diameter, soil texture, and near-soil spectroscopic data (Latent Variable) within the wavelength range of 400–2450 nm were used as proxies for pedogenic factors to model saturated hydraulic conductivity. The results indicated that the XGBoost model exhibited the highest accuracy for predicting Ks, with an R² value of 0.65 and an nRMSE of 0.25, outperforming the other models. Spectral data, topographic variables, and soil parameters, as model inputs, played a significant role in predicting the spatial variability of Ks. The XGBoost model was able to provide highly accurate predictions. The results demonstrated that topographic, physical, and spectral variables influence Ks; organic matter, soil texture, and topographic indices such as slope and relative position had the most substantial impact. The generated maps can be utilized for water and soil resource management and hydrological models.
Keywords