Document Type : Research Paper

Authors

1 Department of Soil and Water, Agricultural and Natural Resources Research Organization, Kerman, Iran

2 Department of Technical & Vocational University, Kerman, Iran

3 Agricultural Resources, University of Valiasr, Rafsanjani, Iran

4 Department of Soil Science, Faculty of Agriculture, University of Tehran, Karaj, Iran

10.22059/jrwm.2024.375890.1760

Abstract

This study aims to evaluate and compare the efficiency of Artificial Neural Network (ANN), Regression Tree (RT) and Neuro-Fuzzy (ANFIS) models using a digital soil mapping framework to predict soil texture in a part of Sirjan province. Sampling was carried out at 84 observation points with a regular grid of 2x2 km, and soil texture components were determined from the soil surface depth of 0 to 30 cm. Auxiliary variables included primary and secondary derivatives of the digital elevation model (DEM), a geomorphological map and remote sensing (RS) spectral indices. The appropriate variables selected using the Principal Component Analysis (PCA) feature selection method. Based on PCA, eight topographic variables and six vegetation indices and spectra from RS selected to predict soil texture components (sand, silt and clay). The efficiency of the models was evaluated using coefficient of determination (R2), mean error (ME), root mean square error (RMSE) and normalised root mean square error (nRMSE). The RMSE values in the neuro-fuzzy model compared with the regression tree model. The results of the neuro-fuzzy model were 1.43% for clay, 1.98% for sand and 2.1% for silt, which were 4.32%, 5% and 4.54% lower respectively compared to the regression tree model. The results of this study showed that the ANFIS model was more accurate in predicting clay, silt and sand compared to ANN and RT. Also, the geomorphology map, topographic wetness index, multi-resolution valley bottumn flatness index and Landsat 8 bands 5 and 6 had the highest relative importance in predicting soil texture components.

Keywords

Abbaspour-Gilandeh, M., & Abbaspour-Gilandeh, Y. (2019). Modelling soil compaction of agricultural soils using fuzzy logic approach and adaptive neuro-fuzzy inference system (ANFIS) approaches. Modeling Earth Systems and Environment, 5(1): 13-20.
Adhikari, K., Kheir, R. B., Greve, M. B., Bocher, P. K., Malone, B. P., Minasny, B., McBratney, A. B. & Greve, M. H. )2013(. High-resolution 3-D mapping of soil texture in Denmark. Soil Science Society of America Journal, 77: 860-876.
Agbaogun, B.K., Olu‑Owolabi, B.I., Buddenbaum, H & Fischer, K. (2023). Adaptive neuro‑fuzzy inference system (ANFIS) and multiple linear regression (MLR) modelling of Cu, Cd, and Pb adsorption onto tropical soils. Environmental Science and Pollution Research. 30: 31085–31101.
Akpa, S. I. C., Odeh, I. O. A & Bishop, T.F. A. (2014). Digital mapping of soil particle-size fractions for Nigeria. Soil Science Society of America Journal, 78(6), 1953-1966.
Castaldi, F., Palombo, A., Santini, F., Pascucci, S., Pignatti, S. & Casa, R. (2016). Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon. Remote Sensing. Environment, 179, 54–65.
Gomez, C., Adeline, K., Bacha, S., Driessen, B., Gorretta, N., Lagacherie, P., Roger, J.M., & Briottet, X. (2018). Sensitivity of clay content prediction to spectral configuration of VNIR/SWIR imaging data, from multispectral to hyperspectral scenarios. Remote Sensing. Environment, 204, 18–30.
Heung, B., Ho, H. C., Zhang, J., Knudby, A., Bulmer, C. E., & Schmidt, M. G. (2016). An overview and comparison of machine-15learning techniques for classification purposes in digital soil mapping, Geoderma, 265, 62-77.
Jafari, A., Ayoubi, S., Khademi, H., Finke, P.A., & Toomanian, N. )2013(. Selection of a taxonomic level for soil mapping using diversity and map purity indices: A case study from an Iranian arid region. Geomorphology, 201,86-97.
Jang, J., Sun, C., & Mizutani, E. )1997(. Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligance. Prentice Hall, Upper Saddle River, New Jersey, USA.
Kashi, H., Emamgholizadeh, S, & Ghorbani, H. )2014(. Estimation of Soil Infiltration & Cation Exchange Capacity Based on Multiple Regression, ANN (RBF, MLP), and ANFIS Models. Communications in Soil Science and Plant Analysis, 45, 1195–1213.
Keshavarzi, A., Sarmadian, F., Labbafi, R., & Vandechali, M.R. (2011). Modeling of soil cation exchange capacity based on fuzzy table look-up scheme and artificial neural network approach. Modern Applied Science, 5(1): 153.
 Keshavarzi, A., Sarmadian, F., Shiri, J., Munawar, L., Tirado-Corbalá, R., & Omran, E.-S.E. (2017). Application of ANFIS-based subtractive clustering algorithm in soil Cation Exchange Capacity estimation using soil and remotely sensed data. Measurement. 95: 173-180.
Khaledian, Y., & Miller, B.A. (2020). Selecting appropriate machine learning methods for digital soil mapping. Applied Mathematical Modelling. 81, 401–418.
Kheir, B., Greve, M.H., Bocher, P.K., Greve, M.B., Larsen, R., & McCloy, K. )2010(. Predictive mapping of soil organic carbon in wet cultivated lands using classification-tree based models: The case study of Denmark. Journal of Environmental Management, 91, 1150-1160.
Liao, K., Xu, S., Wu, J., & Zhu, Q. (2013). Spatial estimation of surface soil texture using remote sensing data. Soil Science Plant Nutrient, 59(4), 488–500.
Lie, M., Glaser, B & Huwe, B. (2012). Uncertainty in the spatial prediction of soil texture: comparison of regression tree and random forest models. Geoderma. 170: 70- 79.
Mahmoudzadeh, H., Matinfar, H.R., Kerry, R., Eskandari, S., Ebrahimi-Khusfi, Z., & Taghizadeh-Mehrjardi, R. (2021). New hybrid evolutionary models for spatial prediction of soil properties in Kurdistan.Soil use and management.38,191-211.
McBratney, A.B., Santos, M.L.M & Minasny, B. (2003). On digital soil mapping. Geoderma. 117, 3-52.
Mehrabi-Gohari, E., Matinfar, H. R., Jafari, A., Taghizadeh-Mehrjardi, R., & Triantafilis, J. (2019). The spatial prediction of soil texture fractions in arid regions of Iran. Soil Systems, 3(4): 65.  
Moonjun, R., Farshad, A., Shrestha, D.P., & Vaiphasa, C. )2010(. Artificial Neural Network and Decision Tree in Predictive Soil Mapping of hoi NumRin Sub-Watershed, Thailand. Digital Soil Mapping Soil Science, 2, 151-164. https://doi.org/10.1007/978-90-481-8863-5_13.
Moore, I.D., Grayson, R.B., & Ladson, A.R. )1991(. Digital terrain modeling: review of hydrological, geomorphological and biological applications. Hydrology. Proc, 5, 3-30.
Mousavi, S. R., Sarmadian, F., Angelini, M. E., Bogaert, P., & Omid, M. (2023). Cause-effect relationships using structural equation modeling for soil properties in arid and semi-arid regions. Catena, 232, 107392. (In Persian)
Mousavi, S. R., Sarmadian, F., Omid, M., & Bogaert, P. (2021). Modeling the Vertical Soil Calcium Carbonate Equivalent Variation by Machine Learning Algorithms in Qazvin Plain. Journal of Water and Soil Science. 35(5),719-734. (In Persian)
Mousavi, S.R., Parsayi, F., Rahmani, A., Sedri, M.H., & Kohsar Bostani, M. )2020(. Spatial Prediction Some of the Surface Soil Properties Using Interpolation and Machine Learning Models. Journal of Soil Management and Sustainable Production .10(3), 27-49. (In Persian)
Nabiollahi, K., Haidari, A. & Taghizadeh Mehrjerdi, R. (2014). Digital mapping of soil texture using regression tree and artificial neural network in Bijar, Kurdistan. Journal of Water and Soil, 28:1025-1036. (In Persian)
Najafi-Ghiri, M., Mokarram, M., & Owliaie, H.R. (2019). Prediction of soil clay minerals from some soil properties with use of feature selection algorithm and ANFIS methods. Soil Research, 57(7): 788–796.
Noori, A., Eftekhari, K., Esfandiari, M., Mohamadi Torkashvand, A., & Ahmadi, A. (2021). Estimation of soil erodible fraction using artificial neural network models and integration of artificial neural network with genetic algorithm in the part of Qazvin province. Quarterly journal of Environmental Erosion Research. 45(12): 145-159. (In Persian)
Olaya, V. I. C. T. O. R. (2004). A gentle introduction to SAGA GIS. The SAGA User Group eV, Gottingen, Germany, 208.
Pachepsky, Y. A., Timilin, D., & Varallyay, G. (1996). Artificial neural networks to estimate soil water retention from easily measurable data. Journal Soil Science Society of America. 60: 727-733.
Parviz, L. (2017). Evaluation the Preprocessing Effect of Satellite Images Input Parameters in to Artificial Neural Network for Soil Texture Determination. Iranian Journal of Applied Soil Research, 5(2): 66-80 (In Persian)
Pham, B. T., Nguyen, M. D., Dao, D. V., Prakash, I., Ly, H.-B., Le, T.-T., Ho, L. S., Nguyen, K. T., Ngo, T. Q., Hoang, V. U., Son, L. H., Ngo, H. T. T., Tran, H. T., Do, N. M., Van Le, H., Ho, H. L., & Tien Bui, D. (2019). Development of artificial intelligence models for the prediction of Compression Coefficient of soil: An application of Monte Carlo sensitivity analysis. Science of the Total Environment, 679: 172–184.
Rahmani A., Sarmadian F., Mousavi S.R., & Khamoshi S.E.) 2020(. Application of Geomorphometric attributes in digital soil mapping by using of machine learning and fuzzy logic approaches. Journal of Range and Watershed Managment .73(1): 105-124. (In Persian)
Rezaei, M., Mousavi, S. R., Rahmani, A., Zeraatpisheh, M., Rahmati, M., Pakparvar, M., ... & Cornelis, W. (2023). Incorporating machine learning models and remote sensing to assess the spatial distribution of saturated hydraulic conductivity in a light-textured soil. Computers and Electronics in Agriculture, 209: 107821.
Sahraee, N., Landi, A., & Hojati, S. (2022). Digital mapping of soil texture components in part of Khuzestan plain lands using machine learning models. Iranian Journal of Soil and Water Research. 53 (10): 2261-2276. (In Persian)
Si, Jianhua., Feng, Qi., Wen, Xiaohu., Xi, Haiyang., Yu, Tengfei., Li, Wei., & Zhao, Chunyan. (2015(. Modeling soil water content in extreme arid area using an adaptive neuro-fuzzy inference system. Journal of Hydrology. 527: 679-687.
Srokosz, P. E., & Bagińska, M. (2020). Application of adaptive neurofuzzy inference system for numerical interpretation of soil torsional shear test results. Advances in Engineering Software, 143: 102793.
Taghizadeh Mehrjardi, R., Minasny, B., Sarmadian, F & Malone, P.B. (2014). Digital mapping of soil salinity in Ardakan region, central Iran.Geoderma. 213: 15-28.
Taghizadeh-Mehrjardi, R., Emadi, M., Cherati, A., Heung, B., Mosavi, A & Scholten, T. (2021). Bio-Inspired Hybridization of Artificial Neural Networks: An Application for Mapping the Spatial Distribution of Soil Texture Fractions. Remote Sensing.13,1025-1048.
Taghizadeh-Mehrjardi, R., Minasny, B., Sarmadian, F., & Malone, P.B. )2013(. Digital mapping of soil salinity in Ardakan region, central Iran. Geoderma, 213: 15-28.
Taghizadeh-Mehrjardi, R., Toomanian, N., Khavaninzadeh, A. R., Jafari, A., & Triantafilis, J. (2016). Predicting and mapping of soil particle-size fractions with adaptive neuro-fuzzy inference and ant colony optimization in central Iran. European Journal of Soil Science, 67: 707–725.
Thompson, J. A., Roecker, S., Grunwald, S & Owens, P. R. )2012(. Digital soil mapping: Interactions with and applications for hydropedology. H. Lin, ed. Hydropedology. 665-709. Amsterdam: Academic Press. https://doi.org/10.1016/B978-0-12-386941-8.00021-6.
Wallach, D., Makowski, D., Jones, J. W., & Brun, F. )2006(. Working with dynamic crop models: evaluation, analysis, parameterization, and applications. Elsevier
Wang, B., Waters, C., Origill, S., Gray, J., Cowie, A., Clark, A., & Liu, D.L. (2018). High resolution mapping of soil organic carbon stocks using remote sensing variables in the semi-arid rangelands of eastern Australia. Science of the Total Environment. 630,367–378.  
Zeraatpisheh, M., Jafari, A., Bagheri Boadaghabadi, M., Ayoubi, S., Taghizadeh Mehrjardi, R., Toomanian, N., Kerry, R., Xu, M. )2020(. Conventional and digital soil mapping in Iran: Past, present, and future. CATENA, 188: 104424.
Zhao, Z., T.L., Chow, H.W., Rees, Q., Yang, Z. Xing., & Meng, F. (2009). Predict soil texture distributions using an artificial neural network model. Computers and Electronics in Agriculture. 65, 36-48.