Document Type : Research Paper

Authors

1 Department of Geography, Faculty of Humanities, Meybod University, Meybod, Iran

2 General Directorate of Natural Resources and Watershed Management of Yazd Province, Yazd, Iran

3 Rangeland and Watershed Group, Environmental and Desert Studies School, Yazd University, Yazd, Iran

10.22059/jrwm.2025.392746.1817

Abstract

پلایای نمکی در مناطق خشک، به‌عنوان اکوسیستمی‌ منحصربه‌فرد و حساس نقش حیاتی در تعادل محیطی و پایداری اکولوژیکی دارند. پژوهش حاضر با هدف ارزیابی روند تغییرات ژئومورفولوژیکی پلایای نمکی ابرکوه تلاش نموده تا با بهره‌گیری از تکنیک‌های جدید سنجش از دوری در محیط گوگل ارث انجین (GEE) به پایش رخساره‌های ژئومرفولوژیک و تغییرات محیطی در منطقه پلایای نمکی ابرکوه در بازۀ زمانی 2002 تا 2024 بپردازد. بدین‌منظور، از تصاویر ماهواره‌ای لندست 5 و 8 برای تهیه نقشه‌های طبقه‌بندی رخساره‌های ژئومورفولوژیکی و تحلیل شاخص‌های طیفی پوشش‌گیاهی (NDVI، SAVI، EVI و TSAVI)، آب (MNDWI)، رطوبت خاک (NDMI) و شوری خاک (SI) استفاده گردید. نتایج نشان داد که رخساره‌های ژئومورفولوژیکی این پلایا در طی سال‌های اخیر دستخوش تغییرات قابل توجهی شده است. کاهش سطح پهنه‌های آبی، پوشش‌گیاهی به ترتیب در حدود 65‌%و 51‌% نسبت به ابتدای سال بررسی و افزایش سطح اراضی شور، رسی و ماسه‌ای به ترتیب در حدود 23‌%، 66‌% و 103‌% از جمله مهم‌ترین تغییرات مشاهده شده بود. تحلیل شاخص‌های طیفی نیز نشان‌دهنده روند کاهشی معنادار در سطح آب و روند افزایشی معنادار در شوری خاک به ترتیب در سطح 1‌% و 5‌% بود. همچنین، با وجود روند افزایشی و معنی‌دار شاخص‌های پوشش گیاهی، نقشه‌های طبقه‌بندی شده کاهش سطح پوشش‌گیاهی را نشان داد، که این تفاوت ناشی از تأثیر بازتاب طیفی نمک و گچ در این منطقه بیابانی است. نتایج پژوهش حاکی از وجود تغییرات در مرز رخساره‌های ژئومرفولوژیکی پلایای نمکی ابرکوه می‌باشد که بخش عمده‌ای از این تغییرات می‌تواند به‌دلیل وقوع خشکسالی و فعالیت‌های انسانی باشد.

Keywords

Abbas, A., & Khan, S. (2007). Using remote sensing techniques for appraisal of irrigated soil salinity. International Congress on Modelling and Simulation (MODSIM), Christchurch, New Zealand.
Abbasszadeh Tehrani, N., & Janalipour, M. (2021). Predicting ecosystem shift in a Salt Lake by using remote sensing indicators and spatial statistics methods (case study: Lake Urmia basin). Environmental Engineering Research, 26(4), 200225-200220. https://doi.org/10.4491/eer.2020.225
Ahmadi, H., Motallebian, M., & Javadi, H. (2024). Dynamics of saltwater intrusion around drying saline lakes: impact of salinity and water level changes. Modeling Earth Systems and Environment, 11(1), 2. https://doi.org/https://doi.org/10.1007/s40808-024-02217-7
Baret, F., Guyot, G., & Major, D. J. (1989, 10-14 July 1989). TSAVI: A Vegetation Index Which Minimizes Soil Brightness Effects On LAI And APAR Estimation. 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,
Boloorani, A. D., Sharif, M., Samany, N. N., Chehrenegar, B., & Amiraslani, F. (2024). Determining the Minimum Water Level Required for the Urmia Lake to Prevent Formation of Salt Storms: A Satellite-Based Analysis. International Journal of Environmental Research, 19(1), 24. https://doi.org/https://doi.org/10.1007/s41742-024-00695-2
Camilleri, S., De Giglio, M., Stecchi, F., & Pérez-Hurtado, A. (2017). Land use and land cover change analysis in predominantly man-made coastal wetlands: towards a methodological framework. Wetlands Ecology and Management, 25(1), 23-43. https://doi.org/https://doi.org/10.1007/s11273-016-9500-4
Carlson, T. N., & Ripley, D. A. (1997). On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of Environment, 62(3), 241-252. https://doi.org/https://doi.org/10.1016/S0034-4257(97)00104-1
Cha, S.-y., & Park, C.-h. (2007). The utilization of Google Earth images as reference data for the multitemporal land cover classification with MODIS data of North Korea. Korean Journal of Remote Sensing, 23(5), 483-491.
Chen, D., Wang, Y., Shen, Z., Liao, J., Chen, J., & Sun, S. (2022). Long Time-Series Mapping and Change Detection of Coastal Zone Land Use Based on Google Earth Engine and Multi-Source Data Fusion. Remote Sensing, 14(1), 1. https://doi.org/https://doi.org/10.3390/rs14010001
Embabi, N. S., & Moawad, M. B. (2014). A semi-automated approach for mapping geomorphology of El Bardawil Lake, Northern Sinai, Egypt, using integrated remote sensing and GIS techniques. The Egyptian Journal of Remote Sensing and Space Science, 17(1), 41-60. https://doi.org/https://doi.org/10.1016/j.ejrs.2014.02.002
Fatemi, M., & Jebali, A. (2022). Path analysis of the effect of climatic elements on wind speed and desertification progress in Central Iran. Arabian Journal of Geosciences, 15(10), 930. https://doi.org/https://doi.org/10.1007/s12517-022-10064-y
Feizizadeh, B., Abdollahi, Z., & Shokati, B. (2022). A GIS-Based Spatiotemporal Impact Assessment of Droughts in the Hyper-Saline Urmia Lake Basin on the Hydro-Geochemical Quality of Nearby Aquifers. Remote Sensing, 14(11), 2516.
Fu, B., Lan, F., Xie, S., Liu, M., He, H., Li, Y.,…Chen, Z. (2022). Spatio-temporal coupling coordination analysis between marsh vegetation and hydrology change from 1985 to 2019 using LandTrendr algorithm and Google Earth Engine. Ecological Indicators, 137, 108763. https://doi.org/https://doi.org/10.1016/j.ecolind.2022.108763
Ganjali, J., Halabian, A., Karam, A., & hajehforoshnia, s. (2022). Investigation of soil salinity changes related to landforms of desert areas in the northern Isfahan province. Quantitative Geomorphological Research, 11(3), 220-253. https://doi.org/10.22034/gmpj.2022.350895.1366 (In Persian)
Ge, Y., Abuduwaili, J., Ma, L., Wu, N., & Liu, D. (2016). Potential transport pathways of dust emanating from the playa of Ebinur Lake, Xinjiang, in arid northwest China. Atmospheric Research, 178-179, 196-206. https://doi.org/https://doi.org/10.1016/j.atmosres.2016.04.002
Gill, T., Collett, L., Armston, J., Eustace, A., Danaher, T., Scarth, P.,…Phinn, S. (2010). Geometric correction and accuracy assessment of Landsat-7 ETM+ and Landsat-5 TM imagery used for vegetation cover monitoring in Queensland, Australia from 1988 to 2007. Journal of Spatial Science, 55(2), 273-287. https://doi.org/https://doi.org/10.1080/14498596.2010.521977
Hamzehpour, N., Marcolli, C., Klumpp, K., Thöny, D., & Peter, T. (2022). The Urmia playa as a source of airborne dust and ice-nucleating particles–Part 2: Unraveling the relationship between soil dust composition and ice nucleation activity. Atmospheric Chemistry and Physics, 22(22), 14931-14956. https://doi.org/https://doi.org/10.5194/acp-11-9155-2011
Harati, H., Kiadaliri, M., Tavana, A., Rahnavard, A., & Amirnezhad, R. (2021). Urmia Lake dust storms occurrences: investigating the relationships with changes in water zone and land cover in the eastern part using remote sensing and GIS. Environ Monit Assess, 193(2), 70. https://doi.org/https://doi.org/10.1007/s10661-021-08851-3
Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1), 195-213. https://doi.org/https://doi.org/10.1016/S0034-4257(02)00096-2
Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295-309. https://doi.org/https://doi.org/10.1016/0034-4257(88)90106-X
Jafari, R., Amiri, M., & Jebali, A. (2024). Machine learning-driven scenario-based models for predicting desert dust sources in central playas of Iran. CATENA, 234, 107618. https://doi.org/https://doi.org/10.1016/j.catena.2023.107618
Jebali, A., & Zare Chahouki, A. (2021). Evaluation of Wind Erosion Risk in Abarkouh Plain Using Landsat Satellite Imageries. Desert Management, 9(3), 17-32. https://doi.org/https://doi.org/10.22034/jdmal.2021.538377.1350 (In Persian)
Liu, X., Song, H., Lei, T., Liu, P., Xu, C., Wang, D.,…Zhao, H. (2021). Effects of natural and anthropogenic factors and their interactions on dust events in Northern China. CATENA, 196, 104919. https://doi.org/https://doi.org/10.1016/j.catena.2020.104919
Liu, Y., Shen, X., Zhang, J., Wang, Y., Wu, L., Ma, R.,…Jiang, M. (2023). Variation in Vegetation Phenology and Its Response to Climate Change in Marshes of Inner Mongolian. Plants, 12(11), 2072. https://doi.org/https://doi.org/10.3390/plants12112072
Mantero, P., Moser, G., & Serpico, S. B. (2005). Partially Supervised classification of remote sensing images through SVM-based probability density estimation. IEEE Transactions on Geoscience and Remote Sensing, 43(3), 559-570. https://doi.org/https://doi.org/10.1109/TGRS.2004.842022
Middleton, N. J. (2017). Desert dust hazards: A global review. Aeolian Research, 24, 53-63. https://doi.org/https://doi.org/10.1016/j.aeolia.2016.12.001
Mirzadeh, S. M. J., Jin, S., & Amani, M. (2023). Spatial-Temporal Changes of Abarkuh Playa Landform from Sentinel-1 Time Series Data. Remote Sensing, 15(11), 2774. https://doi.org/https://doi.org/10.3390/rs15112774
Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3), 247-259. https://doi.org/https://doi.org/10.1016/j.isprsjprs.2010.11.001
Neal, J. T. (1975). Playas and dried lakes: occurrence and development, Dowden, Hutchinson & Ross. Stroudsburg
Rao, B. R. M., Sharma, R. C., Ravi Sankar, T., Das, S. N., Dwivedi, R. S., Thammappa, S. S., & Venkataratnam, L. (1995). Spectral behaviour of salt-affected soils. International Journal of Remote Sensing, 16(12), 2125-2136. https://doi.org/10.1080/01431169508954546
Rayegani, B., Barati Ghahfarokhi, S., & Khoshnava, A. (2019). Dust & Sand Source Identification Using Remotely Sensed Data: a comprehensive Approach. Journal of Range and Watershed Managment, 72(1), 83-105. https://doi.org/https://doi.org/10.22059/jrwm.2019.251015.1223 (In Persian)
Rosen, M. R. (1994). The importance of groundwater in playas: A review of playa classifications and the sedimentology and hydrology of playas. In M. R. Rosen (Ed.), Paleoclimate and Basin Evolution of Playa Systems (pp. 0). Geological Society of America. https://doi.org/https://doi.org/10.1130/SPE289-p1
Saremi Naeini, M. A. (2021). Evaluation of the effects of land use change in Meybod and Ardakan cities on the intensity of wind erosion. Journal of Range and Watershed Managment, 74(1), 121-135. https://doi.org/https://doi.org/10.22059/jrwm.2021.310687.1534 (In Persian)
Sharp, R. P., & Glazner, A. F. (1997). Geology Underfoot in Death Valley and Owens Valley. Mountain Press Publishing.
Shiran, M., Mozzi, P., Adab, H., & Zangeneh Asadi, M. A. (2021). Remote sensing assessment of changes of surface parameters in response to prolonged drought in the arid zone of central Iran (Gavkhoni playa). Remote Sensing Applications: Society and Environment, 23, 100575. https://doi.org/https://doi.org/10.1016/j.rsase.2021.100575
Skakun, R. S., Wulder, M. A., & Franklin, S. E. (2003). Sensitivity of the thematic mapper enhanced wetness difference index to detect mountain pine beetle red-attack damage. Remote Sensing of Environment, 86(4), 433-443. https://doi.org/https://doi.org/10.1016/S0034-4257(03)00112-3
Smith, M., & Pain, C. (2009). Applications of remote sensing in geomorphology. Progress in Physical Geography, 33(4), 568-582. https://doi.org/https://doi.org/10.1177/0309133309346648
Tian, Y., Zhou, D., & Jiang, G. (2020). Conflict or Coordination? Multiscale assessment of the spatio-temporal coupling relationship between urbanization and ecosystem services: The case of the Jingjinji Region, China. Ecological Indicators, 117, 106543. https://doi.org/https://doi.org/10.1016/j.ecolind.2020.106543
Turk, L. J. (1970). Evaporation of Brine: A Field Study on the Bonneville Salt Flats, Utah. Water Resources Research, 6(4), 1209-1215. https://doi.org/https://doi.org/10.1029/WR006i004p01209
Vélez, S., Martínez-Peña, R., & Castrillo, D. (2023). Beyond Vegetation: A Review Unveiling Additional Insights into Agriculture and Forestry through the Application of Vegetation Indices. J, 6(3), 421-436.
Verstappen, H. T. (2011). Chapter Two - Old and New Trends in Geomorphological and Landform Mapping. In M. J. Smith, P. Paron, & J. S. Griffiths (Eds.), Developments in earth surface processes (Vol. 15, pp. 13-38). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-444-53446-0.00002-1
Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025-3033. https://doi.org/https://doi.org/10.1080/01431160600589179
Yasir, M., Hui, S., Binghu, H., & Rahman, S. U. (2020). Coastline extraction and land use change analysis using remote sensing (RS) and geographic information system (GIS) technology–A review of the literature. Reviews on environmental health, 35(4), 453-460. https://doi.org/https://doi.org/10.1515/reveh-2019-0103
Zhang, Y., Xu, Q., Wang, T., & Li, J. (2008). A Robust Biased Estimator for Exterior Orientation of Linear Array Pushbroom Satellite Imagery. Geomatica, 62(1), 33-44. https://doi.org/https://doi.org/10.5623/geomat-2008-0005
Ziaee, A., & Kapralova, D. O. (2025). Using Remote Sensing Methods for the Three Lakes' and Evaluating Their Water Surface and Their Fluctuations. Indonesian Journal of Social and Environmental Issues (IJSEI), 6(1), 19-29. https://doi.org/10.47540/ijsei.v6i1.1467