بررسی تأثیر تعداد عوامل ورودی در مقدار دقت شبکه عصبی مصنوعی برای پهنه‌بندی خطر وقوع زمین‌لغزش (بررسی موردی: حوزه آبخیز هراز)

نویسندگان

1 دانشیار دانشکده منابع طبیعی، دانشگاه تربیت مدرس، ایران

2 کارشناسی ارشد آبخیزداری، دانشکده منابع طبیعی، دانشگاه تربیت مدرس، ایران

3 استادیار دانشکده علوم پایه دانشگاه تربیت مدرس، ایران

چکیده

بیش از 30 درصد از مساحت کشور ایران را مناطق کوهستانی تشکیل می‌دهد، لذا هر ساله حرکات توده ایموجب خسارت به انواع سازه‌های مهندسی، مناطق مسکونی و جنگل‌ها در پی آن ایجاد رسوب و سیلاب‌های گل‌آلودگی رودخانه‌ها می‌شود. لذا برای جلوگیری از این خسارت‌ها و تعیین حساسیت دامنه‌ها، به پهنه‌بندی خطر زمین‌لغزش در مناطق مختلف می‌پردازند. هدف از انجام این پژوهش، تعیین ساختار بهینه شبکه عصبی مصنوعی با تعداد عوامل ورودی مختلف برای پهنه‌بندی خطر وقوع زمین‌لغزش در بخشی از حوزه آبخیز هراز می‌باشد. برای انجام این پژوهش ابتدا تعداد تکرار بهینه برای جلوگیری از آموزش بیش از حد شبکه با روش سعی و خطا تعیین شد. سپس تعداد نرون در لایه پنهان 14 نرون تعیین شد. در نهایت تعداد نرون در لایه ورودی از 1 تا 9 تغییر داده شد. با توجه به نتایج به‌دست آمده مشخص شد که هر چه تعداد نرون در لایه ورودی افزایش یابد کارایی شبکه برای پهنه‌بندی حساسیت زمین‌لغزش بهتر می‌شود. در این پژوهش ساختار 9 نرون در لایه ورودی، 14 نرون در لایه پنهان و 1 نرون در لایه خروجی با نسبت یادگیری 2/0 به‌عنوان ساختار بهینه انتخاب شد که ریشه میانگین مربعات خطا و ضریب تبیین به‌ترتیب برابر 051/0 و 9623/0 بود. نقشه پهنه‌بندی تهیه شده با این ساختار دارای دقت 307/92 درصد بود. نتایج دیگر پژوهش نشان داد که از کل مساحت منطقه مورد مطالعه، 14/35، 73/26، 59/14، 88/9 و 63/13 درصد، به‌ترتیب در طبقه پایدار، کم خطر، خطر متوسط، خطر زیاد و خطر خیلی زیاد قرار گرفته است

کلیدواژه‌ها