پیش‌بینی سیل با استفاده از شبکه عصبی مصنوعی و رگرسیون چندمتغیره غیرخطی (مطالعه موردی: طالقان)

نویسندگان

1 کارشناسی¬ارشد آبخیزداری، دانشکده منابع طبیعی، دانشگاه تهران، ایران

2 دانشیار دانشکده منابع طبیعی، دانشگاه تهران، ایران

3 استاد دانشکده علوم فنون دریایی، دانشگاه آزاد اسلامی، واحد تهران شمال‏، ایران

4 استاد دانشکده منابع طبیعی، دانشگاه تهران، ایران

چکیده

با توجه به کمبود ایستگاه‌های اندازه‌گیری در کشور، لزوم استفاده از مدل‌های تجربی برآورد دبی‌ حداکثر لحظه‌ای بسیار ضروری است. در این پژوهش از دو مدل شبکه عصبی و رگرسیون چندمتغیره غیرخطی برای پیش‌بینی دبی اوج در حوزة آبخیز طالقان استفاده گردید. با استفاده از آمار دبی‌های متوسط حداکثر روزانه و بارش‌های متناظر، یک روز قبل و پنج روز قبل و مجموع بارندگی پنج روزه و همچنین دمای میانگین ماهانه در واحدهای هیدرولوژیک گته‌ده، مهران، علیزان، جوستان و گلینک (به ترتیب از قسمت سراب به سمت پایاب) استخراج و به عنوان ورودی وارد مدل شبکه عصبی شدند. نوع شبکه مورد استفاده شبکه عصبی پیشخور با یک لایه مخفی با الگوریتم پس‌انتشار بود که با استفاده از داده‌ها مذکور، مدل طی سه مرحله آموزش، اعتبارسنجی و آزمون شد. دبی‌های اوج مشاهده‌ای و پیش‌بینی شده در هر دو مدل بر اساس معیار ارزیابی RMSE و r مورد مقایسه قرار گرفت. نتایج نشان دهندة عملکرد بهتر شبکه عصبی نسبت به رگرسیون چندمتغیره غیرخطی است.

کلیدواژه‌ها