Document Type : Research Paper


1 Department of Watershed management, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Professor, Faculty of Natural Resources, University of Tehran, Karaj, Iran

3 Associate Professor., Faculty of Natural Resources, University of Tehran, Karaj, Iran

4 Professor, Department of Watershed management, Science and Research Branch, Islamic Azad University, Tehran, Iran

5 Associate Professor, Department of Soil Science, College of Agriculture, Isfahan University of Technology, 84156-83111, Isfahan, Iran


Rainfall erosivity is the ability of rainfall to detach the soil particles. This study was conducted to evaluate spatial variability of rainfall erosivity indices in Khouzestan Province. The point data of indices (EI30, AIm, KE>1 and Onchev indices) in 74 stations were used to generate spatial erosivity maps through deterministic and geostatistical interpolation methods (Radial Basis Functions, Inverse Distance Weighted, Kriging and Cokriging). Results indicate that cokriging have least error and most correlation with determining coefficient of 0.89, 0.89, 0.48 and 0.49 for EI30, AIm, KE>1 and Onchev indices. Based on the correlation relationships between the basins specific sediment yield (in basins dominating the sedimentation stations) and mean indices of EI30, AIm, KE>1 and Onchev, EI30 index with correlation coefficient of 0.98 (P<0.01) is selected as the appropriate rainfall erosivity index. Based on the prepared map on the basis of Cokriging method with secondary variable of maximum mean monthly rainfall, the east and northeastern regions presented the highest values of EI30 index, while the southern and western regions showed the lowest values of EI30 index. The annual rainfall erosivity (EI30) ranged from 404 to 3064


[1] Arnoldus, H.M.J. (1980). An approximation of the rainfall factor in the universal soil loss equation. In: de Boodt, M., Gabriels, D. (Eds.), Assessment of erosion, Wiley, New York, 127-132.
[2] Capolongo, D., Diodato, N., Mannaerts, C.M., Piccarreta, M. and Strobl, R.O. (2008). Analyzing temporal changes in climate erosivity using a simplified rainfall erosivity model in Basilicata (southern Italy). Journal of Hydrology, 356, 119-130.
[3] Ceglar, A., Crepinsek, Z., Zupanc, V. and Kajfez-Bogataj, L. (2008). A comparative Study of rainfall erosivity for eastern and western Slovenia. Acta Agriculturae Slovenia, 91(2), 331-341.
[4] Goovaerts, P. (1999). Using elevation to aid the geostatistical mapping of rainfall erosivity. Catena, 34, 227-242.
[5] Hadley, R.F., Lal, R., Onstad, C.A., Walling, D.E. and Yair, A. (1985). Recent developments in erosion and sediment yield studies. UNESCO, Paris, 127p.
[6] Hakimkhani, Sh., Mahdian, M.H., Arab Khedri, M. and Ghorbanpour, D. (2005). Investagating rain erosivity using Modified Fournier for Iran. Third National Conference of Erosion and Sediment, Tehran, 281-288.
[7] Hasani Pak, A. (1998). Geostatistics. Tehran University Press, 314p.
[8] Hoghoughi, M. (1995). Khouzestan and its development capacities, Water and Development Journal, 4,17-25.
[9] Hosini Zare, N. and Saadati, N. (2005). Estimating of erosion and sediment using of sedimentology data and computation of suspended load in Khouzestan Province rivers catchments. Third National Conference of Erosion and Sediment, Tehran, 273-280.
[10] Hoyos, N., Waylen, P.R. and Jaramillo, A. (2005). Seasonal and spatial patterns of erosivity in a tropical watershed of the Colombian Andes. Journal of Hydrology, 314, 177–191.
[11] Hudson, N. (1971). Soil conservation. Billing & Sons Ltd, Great Britain, 320p.
[12] Isaaks, E.H. and Serivastava, R.M. (1989). An introduction to applied geostatistics. Oxford University Press, 561p.
[13] Lal, R. (1976). Soil erosion problems on Alfisols in western Nigeria. Effects of rainfall characteristics. Geoderma, 16, 389-401.
[14] Lal, R. and Elliot, W. (1994). Erodibility and erosivity. In Lal, R. (ed), Soil erosion research methods. Soil and Water Conservation Society, Ankeny, 181-208.
[15] Mohammadi, J. (1998). Rain erosivity map providing for Iran using Fournier Index and Kriging method. Agricultural Science and Natural Resources Journal, 3&4, 35-44.
[16] Morgan, R.P.C. (1986). Soil erosion and conservation. Logman Group Limited, Hong-London, 210p.
[17] Onchev, N.G. (1985). Universal index for calculating rainfall erosivity. In: El-Swafify, S.A., Moldenhauer, W.C and Lo, A. (eds), Soil Erosion and Conservation, Soil Conservation Society of America, Ankeny, IO, 242-431.
[18] Renard, k. and Freimund, J.R. (1994). Using monthly precipitation data to estimate the R-factor in the revised USLE. Journal of Hydrology, 157, 287-306.
[19] Salles, C. and Poesen, J. (2000). Rain properties controlling soil splash detachment. Hydrological Process, 14, 271-282.
[20] Salako, F.K., Ghuman, B.S. and Lal, R. (1995). Rainfall erosivity in south-central Nigeria. Soil Technology, 7, 279-296.
[21] Shesh Angosht, S., Alimohammadi, A. and Soltani, M.J. (2005). Geostaistics models evaluation in GIS for erosivity map providing in Latian watershed. Geographical Information System Conference, National Cartographic Center of Iran, 113-123.
[22] Silva, A.M. (2004). Rainfall erosivity map for Brazil. Catena, 57, 251-259.
[23] Taj Ali Pour, Z., Mahdian, M.H., Pazira, A. and Heidarizadeh, M. (2009). Spatial variations investigation of erosivity index in Daryacheh Namak watershed. 11th Soil Science Conference of Iran, Gorgan, 43-47.
[24] Wang, G., Gertner, G., Singh, V., Shinkareva, S., Parysow, P. and Anderson, A. (2002). Spatial and temporal prediction and uncertainty of soil loss using the revised universal soil loss equation: a case study of the rainfall–runoff erosivity R factor. Ecological Modelling, 153 , 143–155.
[25] Wischmeier, W.H. and Smith, D.D. (1978). Predicting rainfall erosion losses: a guide to conservation planning. USDA, Agriculture Handbook No. 537. Government printing office, Washington, DC, 58p.