[1] Abustan, I., Sulaiman, A.H., Abdul Wahid, N. and Baharudin, F. )2008(. Determination of Rainfall-Runoff Characteristics in An Urban, (Case study: Sungai Kerayong Catchment, Kuala Lumpur). 11th International Conference on Urban Drainage.
[2] Alizadeh, A. )2006(. Principles of applied hydrology. 20ed Edition, University of Mashhad Press, 807p.
[3] Arabi, M. and Govindaraju, R.S. and Hantush, M.M. )2007(. A probabilistic approach for analysis of uncertainty in the evaluation of watershed management practice. Journal of Hydrology, 333, 459-471.
[4] Azadnia, F., Rostami, N. and Kamali Moghaddam, R. )2009(. Comparison of empirical equations for estimating time of concentration of the basin Meimeh Ilam. Iranian Water Research Journal, 3(4), 1-8.
[5] Chin, D.A. )2000(. Water-resources engineering. Prentice Hall, New Jersey, 750p.
[6] Dastorani, M.T., Abdullah Wand, A., Talabi, A. and Moghadamnia, A.R. ) 2014(. Evaluate the use of empirical equations for estimating the focus time navigating time streams. Journal Research and development, 103(93), 1-8. In press.
[7] Dongquan, Z., Jining, C., Haozheng, W., Qingyuan, T., Shangbing, C. and Zheng, S. )2009(. GIS-based urban rainfall-runoff modeling using an automatic catchment-discretization approach, (Case study in Macau). Environ Earth Sci, 59, 465- 472.
[8] Eslamian, S. and Mehrabi, A. )2005(. Empirical relations for estimating the time of concentration mountainous watersheds. Journal of Natural Resources and Agricultural Sciences, 12, 36-45.
[9] Fang, X., Thompson, D.B., Cleveland, T.G., Pradhan, P. and Malla, R. )2008(. Time of concentration estimated using watershed parameters determined by automated and manual methods. Journal of Irrigation and Drainage Engineering, 134(2), 202-211.
[10] Green, J. and Nelson, E. )2002(. Calculation tim of Concentration for hydrologic design and analysis using geographic information system vector objects. Journal of Hydro informatics, 4, 75-81.
[11] Jamshidi, S. (2011). Compared to the estimated time of concentration using empirical relations (Case study: Watershed basin Srfyrvz Abad). 2th Geoscience Conference, 9p.
[12] Li, M.H., and Chibber, P. (2008). Overland flow time of concentration on very flat terrains. Transportation Research Record 2060. Transportation Research Board, Washington, DC, 133-140p.
[13] Mahdavi, M. (2011). Applied hydrology. 7ed Edition, Thesis. University of Tehran Press, 439p.
[14] McCuen, R. (1984). Eestimating urban time of concentration. Hydraulic Engineering ASCE, 100, 633-638.
[15] Mobaraki, J. (2006). Accuracy in the estimation of empirical relationships time to peak concentration Hydrograph (Case study: Tehran Province). MSc. Thesis. University of Tehran, 151p.
[16] Moghadamnia, A.R. (1997). A comparative study on the time-delay and time to reach peak flood hydrograph based on experimental methods and analysis of two regional climate. MSc. Thesis. University of Tarbiat Modarres, 163p.
[17] Motamedvaziri, B. (2004). Evaluation of some empirical relations to estimate the time of concentration (Case study: Karaj watershed). MSc. Thesis University of Tehran, 125p.
[18] Najafi, A. (2009). Factors of flood basin catchment Esfahan- Sirjan the factor analysis. Journal of Geography and Environmental Planning, 4, 101-118.
[19] Pavlovic, S.B. and Moglen, G.E. (2008). Discretization issues in travel time calculation. J. Hydrol. Eng., 13(2), 71-79.
[20] Shafai Bajestan, M. (2005). Principles and application of physical models – hydraulic, 1ed Edition, University of Martyr Chamran Press, 292p.
[21] Sharifi, S. and Hosseini, S.M. (2011) .Methodology for Identifying the Best Equations for Estimating the Time of Concentration of Watersheds in a Particular Region. Journal of Irrigation and Drainage Engineering, 137(11), 712-719.
[22] Sepahvand, A., Taei Semirom, M., Myrnya, Kh. and Moradi, H.R. (2011). Evaluate the model sensitivity to the variability of soil moisture. Journal of Soil and Water, 25(2), 338-346.
[23] Sourisseau, S.A., Basser, S.F. and Perie, T. (2007). Calibration, validation and sensitivity analysis of an ecosystem model applied to artificial streams. Water Research, 42, 1167-1181.
[24] Wong, T.S.W. (2005). Assessment of time of concentration formulas for overland flow. J. Irrig. Drain Eng., 131(4), 383-387.
[25] Wong, T.S.W. (2009). Evaluation of kinematic wave time of concentration formulas for overland flow. Journal of Hydraulic Engineering, 14(7), 739-744.