پهنه‌بندی خطر زمین‌لغزش با استفاده از روش SMCE و تکنیک AHP (مطالعه موردی: حوضه آبخیز هفشجان، چهارمحال و بختیاری)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری علوم و مهندسی آبخیز، دانشکده منابع طبیعی، دانشگاه تهران، ایران.

2 دانش آموخته کارشناسی ارشد سنجش ازدور و سیستم اطلاعات جغرافیایی، گرروه سرنجش ازدور و سیستم اطلاعات جغرافیایی، دانشگاه آزاد اسلامی واحد یزد، ایران.

3 استادیار گروه مرتع و آبخیزداری، دانشکده کشاورزی و منابع طبیعی، دانشگاه تربت حیدریه، ایران.

چکیده

یکی از انواع فرآیندهای دامنه‌ای که هرساله موجب خسارات جانی و مالی فراوان در بسیاری از نقاط ایران و جهان می‌شود، پدیده زمین‌لغزش است. تهیه نقشه پهنه‌بندی زمین‌لغزش امکان شناسایی مناطق آسیب پذیر را فرآهم کرده و در برنامه‌های محیطی مدنظر قرار می‌دهد. هدف از این پژوهش پهنه‌بندی خطر زمین‌لغزش در حوزه آبخیز هفشجان واقع در استان چهارمحال و بختیاری با به‌کارگیری روش ارزیابی چندمعیاره مکانی با استفاده از سامانه اطلاعات جغرافیایی (GIS)، نرم‌افزار ILWIS و تکنیک AHP می‌باشد. در این راستا ابتدا با توجه به موقعیت زمین‌لغزش‌های به وقوع پیوسته، مطالعات تطبیقی و نتایج سایر محققان، هشت لایه اطلاعاتی برای این مهم شناسایی شد. سپس درخت‌واره عوامل و محدودیت‌ها در نرم‌افزار ILWIS طراحی گردید، تمامی لایه‌ها استاندارد سازی شده و با استفاده از مدل AHP عوامل مربوطه ارزیابی و تعیین وزن گردید. نهایتاً مدل و نقشه پهنه‌بندی خطر زمین‌لغزش منطقه تهیه و ارائه شد. نتایج نشان می‌دهد که در بین عوامل مؤثر، فاکتورهای فاصله از جاده، فاصله از گسل و فاصله از آبراهه به ترتیب با وزن های 4047/0، 2239/0 و 1302/0 به‌عنوان مهم‌ترین عوامل در ایجاد زمین‌لغزش در منطقه مطالعاتی شناسایی ‌شدند. بر اساس مدل ارائه ‌شده، حدود 32/1 درصد از مساحت حوضه (1013900 مترمربع) دارای خطر وقوع بسیار زیاد و 9 درصد (6909800 مترمربع) دارای خطر وقوع زیاد است. نتایج حاصل از ارزیابی دقت و صحت مدل ارائه ‌شده، روند صعودی شاخص زمین‌لغزش را از پهنه خطر خیلی کم به سمت پهنه خیلی زیاد ترسیم می‌کند و نشان‌دهنده دقت لازم جهت مدل مذکور می‌باشد.

کلیدواژه‌ها


[1] Ahmadi, H. and Mohamadkhan, S.H. (2001). Investigation of Some Mass Movements in Taleghan Basin, Natural Resources of Iran, 4, 455-464.
[2] Alijani, B., Ghahroodi, M. and Amir Ahmadi, A. (2007). Landslide Hazard Zonation in north Hillsides Shah Jahan Using GIS (Case Study: Estarkhi Watershed, Shirvan), Journal of Geographical Research, 84, 116-131.
[3] Alimohamadi, S., Pashaee aval, A., Shataee Joybari, Sh. and Parsaee, L. (2009). Performance Evaluation of Landslide Hazard Models in Syed Kalate Ramian watershed, Journal of Soil and Water Conservation Research, 16(1), 59-78.
[4] Cimren, E., Catay, B. and Budak, E. (2007). Development of a machine tool selection system using AHP. International Journal of Advanced Manufacturing Technology, 35, 363–376.
[5] Dey, P.K. and Ramcharan, E.K. (2000). Analytic hierarchy process helps select site for limestone quarry expansion in Barbados, Journal of Environmental Management. 88, 1384–1395.
[6] Emami, S. N. and Ghayomian, J. (2003). Research on the Mechanism of Landslides on Hillside Debris (Case Study: Afsarabad Landslide, Chaharmahal-o-Bakhtiari). 3th Conference on Engineering Geology and Environment,Hamedan, Iran, 26-33.
[7] Esmali, A. and Ahmadi, H. (2003). Using GIS & RS in Mass Movements Hazard Zonation -A Case Study in Germichay Watershed, Ardebil, Iran. Map India Conference Disaster Management.1-5.

[8] Feiznia, S., Kalarostaghi, A., Ahmadi, H. and Safaee, M. (2004). Checking effective Factors to the occurrence of landslides and landslide hazard zonation (Case Study: Shirinrood Watershed), Iranian Journal of Natural Resources, 57(1), 3-22.
[9] Ghanbarzade, H. and Behniafar, A. (2009). Landslide hazard zonation in the Calshoor catchment Heights (Neishaboor City), Journal of Geographical Space, 28, 103-123.
[10] Ghodsipoor, S. H. (2009). Analytical Hierarchy Process, 7th Edition, University of AmirKabir press, Tehran. September 9-11. 224 Pages.
[11] Hattanji, T. and Moriwaki, H. (2009). Morphometric analysis of relic landslides using detailed landslide distribution maps: Implications for forecasting travel distance of future landslides, Journal of Geomorphology, 103, 447-454.
[12] Lopez H.J. and Zink J.A. (1991). GIS-assisted modelling of soil-induced mass movement hazards: a case study of the upper Coello river basin, Tolima, Colombia. ITC Journal. 4, 202–220.
[13] Moghimi, E., Alavi Panah, S.K. and Jafari, T. (2008). Assessment and zonation effective Factors to the occurrence of landslides for Aladagh northern slopes (Case Study: Chenaran watershed, North Khorasan), Journal of Geographical Research, 64, 53-75.
[14] Mosaffaee, J., Onagh, M., Mesdaghi, M. and Shariat Jafari, M. (2009). Performance comparison of experimental and statistical modeling of landslide hazard zonation (Case Study: Alamootrood watershed), Journal of Soil and Water Conservation, 4, 43-61.
[15] Nefeslioglu, H.A., Duman, T.Y. and Durmaz, S. (2008). Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey), Journal of Geomorphology, 94, 401-418.
[16] Ownegh, M. (2004). Assessing the Application of Australian Landslide databases for hazard management, 13th International Soil Conservation Organization Conference - Brisbane, July, 1-5.
[17] Pradhan, B. (2011). An Assessment of the Use of an Advanced Neural Network Model with Five Different Training Strategies for the Preparation of Landslide Susceptibility Maps, Journal of Data Science. 9, 65-81.
[18] Ramesht, M. S. (1996). Application of Geomorphology in National Regional Economic Planning, 1st Edition, University of Esfahan press. 392 Pages.
[19] Saaty, T.L. (1986). Axiomatic foundation of analytical hierarchy process, Journal of Management science. 31, 841-855.
[20] Shadfar, S., Yamani, M., Ghodosi, J. and Ghayomian, J. (2007). Landslide Hazard Zonation Using Analytical Hierarchy Process (Case Study: Chalekrood Watershed, Tonekabon), Journal of Research and Construction in Natural Resources, 75, 117-126.
[21] Vahidnia, M. H., Alesheikh, A. A., Alimohammadi, A. and Hosseinali, F. (2009). Landslide Hazard Zonation Using Quantitative Methods in GIS, International Journal of Civil Engineering, 7, 176-189.
[22] Van Westen, C.J., Rengers, N., Terline, M.T.J., and Soeters, R. (1997). Predication of the Occurrence of slope Instability Phenomena through GIS-Based Zonation, Journal of Geologisches Rundschau, 86, 404-414.
[23] Yalcin, A. (2008). GIS-based landslide susceptibility mapping using analytical hierarchy Process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations, Journal of Catena, 72, 1-12.
[24] Yoshimatsu, H. and Abe, S. (2006). A review of landslide hazards in Japan and assessment of their Susceptibility using an analytical hierarchic process (AHP) method, Journal of Landslides, 3, 149-158.