پهنه‌بندی و ارزیابی فراوانی چشمه‌ها در مناطق کارستی با استفاده از رگرسیون لجستیک (مطالعۀ موردی: حوزۀ آبخیز بجنورد)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار دانشکدۀ منابع‌طبیعی، دانشگاه تهران

2 دانشجوی کارشناسی ارشد آبخیزداری، دانشکدۀ منابع‌طبیعی، دانشگاه تهران

3 استاد دانشکدۀ منابع‌طبیعی، دانشگاه تهران

چکیده

ارزیابی فراوانی چشمه‌ها به موضوعی مهم برای برنامه­ریزی استفاده از زمین، به خصوص شناسایی منابع آب زیرزمینی و حفاظت از محیط‌زیست تبدیل شده است. بدین منظور جهت تولید نقشۀ فراوانی چشمه­های حوزۀ آبخیز بجنورد، از روش رگرسیون لجستیک باینری (به منظور وجود و عدم وجود چشمه)، تکنیک­های سیستم اطلاعات جغرافیایی (GIS) و سنجش از دور (RS) استفاده گردید. در این منطقه تعداد 359 چشمه شناسایی شد و 14 عامل مؤثر در وجود چشمه شامل تراکم خطواره، فاصله از خطواره، فاصله از آبراهه، تراکم زهکشی، شاخص پوشش گیاهی (NDVI)، انحنای پروفیل، انحنای مماسی، نسبت سطح، برآیند بردار، بارندگی، ارتفاع، زمین­شناسی، جهت­های جغرافیایی و شیب مورد تجزیه و تحلیل قرار گرفت. ضرایب عوامل مؤثر توسط رگرسیون لجستیک از 300 چشمه که به صورت تصادفی انتخاب‌شده بودند، به دست آمد. از 59 چشمۀ دیگر برای مرحلۀ اعتبار­سنجی استفاده شد. در نهایت نقشۀ فراوانی چشمه­­ها به چهار طبقۀ احتمالاتی خیلی کم، کم، متوسط و زیاد تقسیم گردید. نتایج نشان داد که وجود بیش از 80 درصد از چشمه­ها به درستی پیش­بینی گردید. همچنین دقت مدل با استفاده از منحنی ROC، 6/86 درصد تخمین زده شد که نشان­دهندۀ دقت بالای مدل در تحلیل فراوانی چشمه­ها در منطقۀ مورد مطالعه است. در پایان عوامل تراکم زهکشی، شاخص پوشش گیاهی، برآیند بردار، بیش‌ترین ضریب و عوامل شیب، ارتفاع و نسبت سطح کمترین معنی­داری را در بروز چشمه­ها داشته­اند. با توجه به نتایج این تحقیق، می­توان از این روش برای شناسایی منابع آب زیرزمینی در مناطق کارستی استفاده کرد و در بهبود مدیریت جامع حوزه­های آبخیز کارستی، نقش مهمی ایفا نماید.

کلیدواژه‌ها


 [1] Ahmadi, H. (2007). Applied Geomorphology, 5ed Edition, University of Tehran Press.
 [2] Ayalew, L. and Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda–Yahiko Mountains, Central Japan. Geomorphology, 65 (1–2), 15-31.
[3] Bai, S.B., Wang, J., Lu, G.N., Zhou, P.G., Hou, S.S. and Xu, S.N. (2010). GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the three Gorges area China. Geomorphology, 115 (1–2), 23-31.
[4] Egan, J.P. (1975). Signal Detection Theory and ROC Analysis. New York Academic Press.
[5] Ganapuram, S., VijayaKumar, G.T., Murali Krishna, I.V., Kahya, E. and Demirel, M.C. (2009). Mapping of groundwater potential zones in the Musi basin using remote sensing data and GIS. Journal of Advance Engineer Software, 40, 506-518.
[6] Gholami, V., Azodi, M. and Salimi, E. T. (2008). Modeling of karst and alluvial springs discharge in the central Alborz highlands and on the Caspian southern coasts. Caspian Journal of Environment Science, 6(1), 41-45.
[7] Greenbaum, D. (1992). Structural influences on the occurrence of groundwater in SE Zimbabwe. Journal of Geological Society. 66, 77-85.
[8] Harrell, F.E., (2001). Regression modeling strategies: with applications to linear models logistic regression and survival analysis. Springer.
[9] Hosmer, D.W., and Lemeshow, S. (2000). Applied Logistic Regression, 2nd Edition. John Wiley and Sons.
[10] Jain, P.K. (1998). Remote sensing techniques to locate ground water potential zones in upper Urmil River basin, district Chatarpur-central India. journal of Indian society remote sensing. 26 (3), 135-147.
[11] Karami, gh.h. (2010). Stratigraphic role in the development of karst in the CHeshmeh Ali Damghan Basin. Journal of stratigraphy and sedimentology, 36, 52-39.
[12] Kresic, N. and Stevanivic, Z. (2010). Groundwater hydrology of springs, Elsevier Press.
[13] Lee, S., Oh, H.J. and Kim, K.D. (2010). Statistical spatial modeling of ground subsidence hazard near an abandoned underground coal mine. Journal of Disaster Advance. 3, 11-23.
[14] Lee, S. (2005). Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. journal of Indian society remote sensing. 26 (7), 1477-1491.
[15] Mathew, J., Jha, V.K. and Rawat, G.S. (2007). Weights of evidence modeling for landslide hazard zonation mapping in part of Bhagirathi valley, Uttarakhand. Current Science. 92(5), 628-638.
[16] Mathew, J., Jha, V.K.  and Rawat, G.S. (2007). Application of binary logistic regression analysis and its validation for landslide susceptibility mapping in part of Garhwal Himalaya. Journal of Indian society remote sensing. 28 (10), 2257-2275.
[17] Mukherjee, S. (1996). Targetting saline aquifer by remote sensing and geophysical methods in a part of Hamirpur–Kanpur, India. Journal of hydrology. 19, 1867-1884.
[18] Nandi, A. and Shakoor, A. (2009). A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Engineering Geology Journal. 110, 11-20.
[19] Oh, H.J., Kim, Y.S., Choi, J.K. and Lee, S. (2011). GIS mapping of regional probabilistic groundwater potential in the area of Pohang City. Korea Journal of hydrology. 399, 158-172.
[20] Ohlmacher, C.G., Davis, C.J. (2003). Using multiple regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Engineering Geology Journal, 69 (3), 331-343.
[21] Ozdemir, A. (2011). Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in the Sultan Mountains (Aksehir, Turkey). Journal of Hydrology, 405(1), 123-136.
[22] Saberi, A., Rangzan, K. and Keshavarz, M.R. (2013). Detecting of potential groundwater resources by combining remote sensing and GIS analytic hierarchy method (AHP) in Khuzestan anticline Kmstan. Journal of Advanced Applied Geology, 6, 11-20.
[23] Sappington, J.M., Longshore, K.M. and Thompson, D.B. (2007). Quantifying landscape ruggedness for animal habitat analysis: a case study using bighorn sheep in the Mojave Desert. Journal of Wildlife Management, 71, 1419-1426.
[24] Schmidt, J., Evans, I.S. and Brinkmann, J. (2003). Comparison of polynomial models for land surface curvature calculation. International Journal of Geographical Information Science, 17, 797-814.
[25] Shuin, Y., Hotta, N., Suzuki, M. and Ogawa, K. (2012). Estimating the effects of heavy rainfall conditions on shallow landslides using a distributed landslide conceptual model. Physics and Chemistry of Earth, 49, 44-51.
 [26] White, W.B., Culver, D.C., Herman, J.S., Kane, T.C. and Mylroie, J.E. (1995). Karst lands: American Scientist, 83(5), 450-459.
[27] Wilson, J.P. and Gallant, J.C. (2000). Terrain Analysis Principles and Applications, Chichester Wiley press.
[28] Zhu, L., Huang, J. (2006). GIS-based logistic regression method for landslide susceptibility mapping in regional scale. Journal of Zhejiang University Science. 7 (12), 2007-2017.