Document Type : Research Paper

Authors

1 Facultu of natural resources

2 ut

3 faculty of natural resources

Abstract

The purpose of this study is the effects of the morphometric factors on peak discharge in 108 hydrometric stations in the southern watersheds, Iran. After homogeneous tests and random data, a time period (from 1983-1984 to 2013-2014 was chosen and used to choose the best probability distribution function. Overall, the 84 morphometric and geometric parameters were calculated in ARC GIS software. In this research, the structural equation modeling with the least approach in smart – PLS software was used to check the most effective factors on the annual maximum discharge. 18 variables were identified as effective factors on the maximum discharge. between more than 84 structures, the effect of the focus time structures, positive height ratio, miller slenderness ratio structures ,the main river- slope characteristics , elevation number and the main river-slope height properties are negative than can predict overall the %46 of the annual maximum discharge changes in the watershed areas of Iran s southern parts. These factors affect directly on the flood in the total focus time about %38 thus, the most effective factor on the flood discharge is the focus time factor that should be considered in the flood management in Iran s southern areas.

Keywords

[1]        Ahn, K.-H., & Merwade, V. (2016). Role of Watershed Geomorphic Characteristics on Flooding in Indiana, United States. Journal of Hydrologic Engineering, 21(2), 5015021-1-5015021–12.
[2]        Arnau-Rosalén, E., Calvo-Cases, A., Boix-Fayos, C., Lavee, H., & Sarah, P. (2008). Analysis of soil surface component patterns affecting runoff generation. An example of methods applied to Mediterranean hillslopes in Alicante (Spain). Geomorphology, 101(4), 595–606.
[3]        Bae, D., Jung, I., & Chang, H. (2008). Long‐term trend of precipitation and runoff in Korean river basins. Hydrological Processes, 22(14), 2644–2656.
[4]        Berger, K. P., & Entekhabi, D. (2001). Basin hydrologic response relations to distributed physiographic descriptors and climate. Journal of Hydrology, 247(3–4), 169–182.
[5]        Carrillo, G., Troch, P. A., Sivapalan, M., Wagener, T., Harman, C., & Sawicz, K. (2011). Catchment classification: hydrological analysis of catchment behavior through process-based modeling along a climate gradient. Hydrology and Earth System Sciences, 15(11), 3411–3430.
[6]        Carrillo, G., Troch, P. A., Sivapalan, M., Wagener, T., Harman, C., & Sawicz, K. (2011). Catchment classification: hydrological analysis of catchment behavior through process-based modeling along a climate gradient. Hydrology and Earth System Sciences, 15(11), 3411–3430.
[7]        Carrascal, L. M., Galván, I., & Gordo, O. (2009). Partial least squares regression as an alternative to current regression methods used in ecology. Oikos, 118(5), 681–690.
[8]        Day, C. A. (2009). Modelling impacts of climate change on snowmelt runoff generation and streamflow across western US mountain basins: a review of techniques and applications for water resource management. Progress in Physical Geography, 33(5), 614–633.
[9]        Dendy, F. E. and G. C. Bolton. 1976. Sediment yield–runoff–drainage area relationships in the United States. Journal of Soil and Water Conservation 31:264–266.
[10]   Detenbeck, N. E., Brady, V. J., Taylor, D. L., Snarski, V. M., & Batterman, S. L. (2005). Relationship of stream flow regime in the western Lake Superior basin to watershed type characteristics. Journal of Hydrology, 309(1–4), 258–276.
[11]    de Vente, J., Poesen, J., Arabkhedri, M., & Verstraeten, G. (2007). The sediment delivery problem revisited. Progress in Physical Geography, 31(2), 155–178.
[12]    Fan, Y., van den Dool, H. M., & Wu, W. (2011). Verification and Intercomparison of Multimodel Simulated Land Surface Hydrological Datasets over the United States. Journal of Hydrometeorology, 12, 531–555.
[13]    Fercher, M., Mueller, M. H., and Alaoui, A. (2018). Modelling the impact of land use changes on peak discharge in the Urseren Valley, Central Swiss Alps. CATENA, 163, 321-331.
[14]    Freer, J., Mcdonnell, J. J., Beven, K. J., Peters, N. E., Burns, D. A., Hooper, R. P., Kendall, C. (2002). The role of bedrock topography on subsurface storm flow, 38(12).
[15]    Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W., & Sitch, S. (2004). Terrestrial vegetation and water balance - Hydrological evaluation of a dynamic global vegetation model. Journal of Hydrology, 286(1–4), 249–270.
[16]    Hirsch, R. M. 1982, A comparison of four streamflow record extension techniques. Water Resources Research, 18(4), 1081-1088.‏
[17]    Hurst, H. The long-term storage capacity of reservoirs Transactions of American Society Civil Engineer." (1951): 116-195.
[18]    Henseler, J., & Fassott, G. (2010). Testing Moderating Effects in PLS Path Models: An Illustration of Available Procedures. In Handbook of Partial Least Squares (pp. 713–735). Berlin, Heidelberg: Springer Berlin Heidelberg.S
[19]    Huang, H., Cheng, S., Wen, J., & Lee, J. (2008). Effect of growing watershed imperviousness on hydrograph parameters and peak discharge. Hydrological Processes, 22(13), 2075–2085.
[20]    Hair, J. F., Ringle, C. M., & Sarstedt,M. (2011). PLS-SEM: Indeed a Silver Bullet. The Journal of Marketing Theory and Practice, 19(2), 139–152.
[21]    Iacobucci, D. (2010). Structural equations modeling: Fit Indices, sample size, and advanced topics. Journal of Consumer Psychology, 20(1), 90–98.
[22]    IRWA, 2017. Iran Water Resource Bulletin, power ministry. [In Persia].
[23]    Jetten, V., Govers, G., & Hessel, R. (2003). Erosion models: quality of spatial predictions. Hydrological Processes, 17(5), 887–900.
[24]    Jencso, K. G., & McGlynn, B. L. (2011). Hierarchical controls on runoff generation: Topographically driven hydrologic connectivity, geology, and vegetation. Water Resources Research, 47(11), 1–16.
[25]    King, R. S., Baker, M. E., Whigham, D. F., Weller, D. E., Jordan, T. E., Kazyak, P. F., & Hurd, M. K. (2005). Spatial considerations for linking watershed land cover to ecological indicators in streams. Ecological applications, 15(1), 137-153.
[26]    Kothyari, U. C., Jain, M. K., & Ranga Raju, K. G. (2002). Estimation of temporal variation of sediment yield using GIS. Hydrological Sciences Journal, 47(5), 693–706.
[27]    Moore, I.D., and Wilson, J.P. (1992). Length-slope factors for the Revised Universal Soil Loss Equation: Simplified method of estimation. J. Soil and Water Conserv. 47: 423-428.
[28]    Mith, T. J., & Marshall, L. A. (2010). Exploring uncertainty and model predictive performance concepts via a modular snowmelt-runoff modeling framework. Environmental Modelling and Software, 25(6), 691–701.
[29]    Nosetto, M. D., Jobbágy, E. G., Brizuela, A. B., & Jackson, R. B. (2012). The hydrologic consequences of land cover change in central Argentina. Agriculture, Ecosystems and Environment, 154, 2–11.
[30]    Speight, J. G. (1980). The role of topography in controlling throughflow generation. Earth Surface Processes, 5(4), 187–191.
[31]    Sharma, S. K., & Tiwari, K. N. (2009). Bootstrap based artificial neural network (BANN) analysis for hierarchical prediction of monthly runoff in Upper Damodar Valley Catchment. Journal of Hydrology, 374(3–4), 209–222.
[32]    Sahoo, R., and Jain, V. (2018). Sensitivity of drainage morphometry based hydrological response (GIUH) of a river basin to the spatial resolution of DEM data. Computers & Geosciences, 111, 78-86.
[33]    Sawicz, K., Wagener, T., Sivapalan, M., Troch, P. A., & Carrillo, G. (2011). Catchment classification: empirical analysis of hydrologic similarity based on catchment function in the eastern USA. Hydrology and Earth System Sciences, 15(9), 2895–2911.
[34]    Shi, Z. H., Ai, L., Li, X., Huang, X. D., Wu, G. L., and Liao, W. (2013). Partial least-squares regression for linking land-cover patterns to soil erosion and sediment yield in watersheds. Journal of Hydrology, 498, 165–176.
[35]    Tenenhaus, M., Vinzi, V. E., Chatelin, Y.-M., & Lauro, C. (2005). PLS path modeling. Computational Statistics & Data Analysis, 48(1), 159–205.
[36]    Trimble, S. W. (2000). LAND USE: U.S. Soil Erosion Rates--Myth and Reality. Science, 289(5477), 248–250
[37]    Ullman, J. B. (2006). Structural equation modeling: Reviewing the basics and moving forward. Journal of personality assessment, 87(1), 35-50.
[38]    Wold، S.، Sjöström، M.، & Eriksson، L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems 58(2): 103-130.
[39]    Wei, W., Chen, L., Yang, L., Fu, B., & Sun, R. (2012). Spatial scale effects of water erosion dynamics: Complexities, variabilities, and uncertainties. Chinese Geographical Science, 22(2), 127–143.
[40]    Xin, Z., Yu, X., & Lu, X. X. (2011). Factors controlling sediment yield in China’s Loess Plateau. Earth Surface Processes and Landforms, 36(6), 816–826.
[41]    Zhang, H. Y., Shi, Z. H., Fang, N. F., & Guo, M. H. (2015). Linking watershed geomorphic characteristics to sediment yield: Evidence from the Loess Plateau of China. Geomorphology, 234, 1