[1] Ahn, K.-H., & Merwade, V. (2016). Role of Watershed Geomorphic Characteristics on Flooding in Indiana, United States. Journal of Hydrologic Engineering, 21(2), 5015021-1-5015021–12.
[2] Arnau-Rosalén, E., Calvo-Cases, A., Boix-Fayos, C., Lavee, H., & Sarah, P. (2008). Analysis of soil surface component patterns affecting runoff generation. An example of methods applied to Mediterranean hillslopes in Alicante (Spain). Geomorphology, 101(4), 595–606.
[3] Bae, D., Jung, I., & Chang, H. (2008). Long‐term trend of precipitation and runoff in Korean river basins. Hydrological Processes, 22(14), 2644–2656.
[4] Berger, K. P., & Entekhabi, D. (2001). Basin hydrologic response relations to distributed physiographic descriptors and climate. Journal of Hydrology, 247(3–4), 169–182.
[5] Carrillo, G., Troch, P. A., Sivapalan, M., Wagener, T., Harman, C., & Sawicz, K. (2011). Catchment classification: hydrological analysis of catchment behavior through process-based modeling along a climate gradient. Hydrology and Earth System Sciences, 15(11), 3411–3430.
[6] Carrillo, G., Troch, P. A., Sivapalan, M., Wagener, T., Harman, C., & Sawicz, K. (2011). Catchment classification: hydrological analysis of catchment behavior through process-based modeling along a climate gradient. Hydrology and Earth System Sciences, 15(11), 3411–3430.
[7] Carrascal, L. M., Galván, I., & Gordo, O. (2009). Partial least squares regression as an alternative to current regression methods used in ecology. Oikos, 118(5), 681–690.
[8] Day, C. A. (2009). Modelling impacts of climate change on snowmelt runoff generation and streamflow across western US mountain basins: a review of techniques and applications for water resource management. Progress in Physical Geography, 33(5), 614–633.
[9] Dendy, F. E. and G. C. Bolton. 1976. Sediment yield–runoff–drainage area relationships in the United States. Journal of Soil and Water Conservation 31:264–266.
[10] Detenbeck, N. E., Brady, V. J., Taylor, D. L., Snarski, V. M., & Batterman, S. L. (2005). Relationship of stream flow regime in the western Lake Superior basin to watershed type characteristics. Journal of Hydrology, 309(1–4), 258–276.
[11] de Vente, J., Poesen, J., Arabkhedri, M., & Verstraeten, G. (2007). The sediment delivery problem revisited. Progress in Physical Geography, 31(2), 155–178.
[12] Fan, Y., van den Dool, H. M., & Wu, W. (2011). Verification and Intercomparison of Multimodel Simulated Land Surface Hydrological Datasets over the United States. Journal of Hydrometeorology, 12, 531–555.
[13] Fercher, M., Mueller, M. H., and Alaoui, A. (2018). Modelling the impact of land use changes on peak discharge in the Urseren Valley, Central Swiss Alps. CATENA, 163, 321-331.
[14] Freer, J., Mcdonnell, J. J., Beven, K. J., Peters, N. E., Burns, D. A., Hooper, R. P., Kendall, C. (2002). The role of bedrock topography on subsurface storm flow, 38(12).
[15] Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W., & Sitch, S. (2004). Terrestrial vegetation and water balance - Hydrological evaluation of a dynamic global vegetation model. Journal of Hydrology, 286(1–4), 249–270.
[16] Hirsch, R. M. 1982, A comparison of four streamflow record extension techniques. Water Resources Research, 18(4), 1081-1088.
[17] Hurst, H. The long-term storage capacity of reservoirs Transactions of American Society Civil Engineer." (1951): 116-195.
[18] Henseler, J., & Fassott, G. (2010). Testing Moderating Effects in PLS Path Models: An Illustration of Available Procedures. In Handbook of Partial Least Squares (pp. 713–735). Berlin, Heidelberg: Springer Berlin Heidelberg.S
[19] Huang, H., Cheng, S., Wen, J., & Lee, J. (2008). Effect of growing watershed imperviousness on hydrograph parameters and peak discharge. Hydrological Processes, 22(13), 2075–2085.
[20] Hair, J. F., Ringle, C. M., & Sarstedt,M. (2011). PLS-SEM: Indeed a Silver Bullet. The Journal of Marketing Theory and Practice, 19(2), 139–152.
[21] Iacobucci, D. (2010). Structural equations modeling: Fit Indices, sample size, and advanced topics. Journal of Consumer Psychology, 20(1), 90–98.
[22] IRWA, 2017. Iran Water Resource Bulletin, power ministry. [In Persia].
[23] Jetten, V., Govers, G., & Hessel, R. (2003). Erosion models: quality of spatial predictions. Hydrological Processes, 17(5), 887–900.
[24] Jencso, K. G., & McGlynn, B. L. (2011). Hierarchical controls on runoff generation: Topographically driven hydrologic connectivity, geology, and vegetation. Water Resources Research, 47(11), 1–16.
[25] King, R. S., Baker, M. E., Whigham, D. F., Weller, D. E., Jordan, T. E., Kazyak, P. F., & Hurd, M. K. (2005). Spatial considerations for linking watershed land cover to ecological indicators in streams. Ecological applications, 15(1), 137-153.
[26] Kothyari, U. C., Jain, M. K., & Ranga Raju, K. G. (2002). Estimation of temporal variation of sediment yield using GIS. Hydrological Sciences Journal, 47(5), 693–706.
[27] Moore, I.D., and Wilson, J.P. (1992). Length-slope factors for the Revised Universal Soil Loss Equation: Simplified method of estimation. J. Soil and Water Conserv. 47: 423-428.
[28] Mith, T. J., & Marshall, L. A. (2010). Exploring uncertainty and model predictive performance concepts via a modular snowmelt-runoff modeling framework. Environmental Modelling and Software, 25(6), 691–701.
[29] Nosetto, M. D., Jobbágy, E. G., Brizuela, A. B., & Jackson, R. B. (2012). The hydrologic consequences of land cover change in central Argentina. Agriculture, Ecosystems and Environment, 154, 2–11.
[30] Speight, J. G. (1980). The role of topography in controlling throughflow generation. Earth Surface Processes, 5(4), 187–191.
[31] Sharma, S. K., & Tiwari, K. N. (2009). Bootstrap based artificial neural network (BANN) analysis for hierarchical prediction of monthly runoff in Upper Damodar Valley Catchment. Journal of Hydrology, 374(3–4), 209–222.
[32] Sahoo, R., and Jain, V. (2018). Sensitivity of drainage morphometry based hydrological response (GIUH) of a river basin to the spatial resolution of DEM data. Computers & Geosciences, 111, 78-86.
[33] Sawicz, K., Wagener, T., Sivapalan, M., Troch, P. A., & Carrillo, G. (2011). Catchment classification: empirical analysis of hydrologic similarity based on catchment function in the eastern USA. Hydrology and Earth System Sciences, 15(9), 2895–2911.
[34] Shi, Z. H., Ai, L., Li, X., Huang, X. D., Wu, G. L., and Liao, W. (2013). Partial least-squares regression for linking land-cover patterns to soil erosion and sediment yield in watersheds. Journal of Hydrology, 498, 165–176.
[35] Tenenhaus, M., Vinzi, V. E., Chatelin, Y.-M., & Lauro, C. (2005). PLS path modeling. Computational Statistics & Data Analysis, 48(1), 159–205.
[36] Trimble, S. W. (2000). LAND USE: U.S. Soil Erosion Rates--Myth and Reality. Science, 289(5477), 248–250
[37] Ullman, J. B. (2006). Structural equation modeling: Reviewing the basics and moving forward. Journal of personality assessment, 87(1), 35-50.
[38] Wold، S.، Sjöström، M.، & Eriksson، L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems 58(2): 103-130.
[39] Wei, W., Chen, L., Yang, L., Fu, B., & Sun, R. (2012). Spatial scale effects of water erosion dynamics: Complexities, variabilities, and uncertainties. Chinese Geographical Science, 22(2), 127–143.
[40] Xin, Z., Yu, X., & Lu, X. X. (2011). Factors controlling sediment yield in China’s Loess Plateau. Earth Surface Processes and Landforms, 36(6), 816–826.
[41] Zhang, H. Y., Shi, Z. H., Fang, N. F., & Guo, M. H. (2015). Linking watershed geomorphic characteristics to sediment yield: Evidence from the Loess Plateau of China. Geomorphology, 234, 1