A comprehensive report of Aligoders, the second, third, sixth and sixteenth chapters. (2013). Pars Rai Ab Consulting Engineering Company.
Agarwal, R. & Garg, P.K. (2016). Remote sensing and GIS based groundwater potential & recharge zones mapping using multi-criteria decision-making technique. Water resources management, 30(1), pp. 243-260.
Aghazadeh, N., Chitsazam, M. & Mirzayi, Y. (2019). Assessing the potential and actual amounts of aquifer recharge in urban areas and mapping the areas prone to artificial recharge using GIS and AHP. Case study: Urmia urban aquifer. Advanced Applied Geology, 9(2), pp. 56-67. (In Persian)
Alizadeh, A. (1988). Drainage irrigation, the fifth chapter. Publications of Ferdowsi University of Mashhad. (In Persian)
Behyari, M., Alizadeh, A. & Mahmodian, S. (2017). Evaluation of active structure effect on subsidence hazard insight to Analytical Hierachy Process. Advanced Applied Geology, 7(2), pp. 49-56. (In Persian)
Beven. K. & Freer. J. (2001) A dynamic TOPMODEL, Hydrological Processes, 15(10), pp. 1993-2011.
Chen, W., Li, Y., Xue, W., Shahabi, H., Li, S., Hong, H., Wang, X., Bian, H., Zhang, S. & Pradhan, B. (2020a). Modeling flood susceptibility using data-driven approaches of naïve bayes tree, alternating decision tree, and random forest methods. Sci. Total Environ. 701, 134979.
Chen, W., Pourghasemi, H.R. & Naghibi, S.A. (2018). Prioritization of landslide conditioning factors and its spatial modeling in shangnan county, china using gis-based data mining algorithms. Bull. Eng. Geol. Environ. 77, pp. 611–629.
Chen, W., Zhao, X., Tsangaratos, P., Shahabi, H., Ilia, I., Xue, W., Wang, X. & Ahmad, B.B. (2020b). Evaluating the usage of tree-based ensemble methods in groundwater spring potential mapping. J. Hydrol. 583, 124602.
Chenini, I., Mammou, A.B. & El May, M. (2010). Groundwater recharge zone mapping using GIS-based multi-criteria analysis: a case study in Central Tunisia (Maknassy Basin). Water resources management, 24(5), pp. 921-939.
Conforti. M., Aucelli. P. P, Robustelli.G. & Scarciglia.F. (2011). Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy), Nat Hazards, 56(3), pp. 881–898.
Döll, P., & Flörke, M. (2005). Global-scale estimation of diffuse groundwater recharge: model tuning to local data for semi-arid and arid regions and assessment of climate change impact.
Explanatory studies of soil protection and watershed management of Marbareh watershed and a small part of Tireh River in the north of Dorud. (2001). Lorestan Regional Water Company, management of basic studies of water resources.
Fagbohun, B.J. (2018). Integrating GIS and multi-influencing factor technique for delineation of potential groundwater recharge zones in parts of Ilesha schist belt, southwestern Nigeria. Environmental earth sciences, 77(3), p.69.
Fallah, S., Ghobadinia, M., Shokrgozar Darabi, M. & Ghorbani Dashtaki, S. (2012). A study on sustainability of groundwater resources of Darab plain, Iran. Iranian Journal of Water Research in Agriculture, 26(2), pp. 161- 172. (In Persian)
Fishman, R. M., Siegfried, T., Raj, P., Modi, V., & Lall, U. (2011). Over‐extraction from shallow bedrock versus deep alluvial aquifers: Reliability versus sustainability considerations for India's groundwater irrigation. Water Resources Research, 47(6).
Foster, S.S.D. & Chilton, P.J. (2003). Groundwater: the processes and global significance of aquifer degradation. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 358(1440), pp. 1957-1972.
Gerland, P., Raftery, A. E., Ševčíková, H., Li, N., Gu, D., Spoorenberg, T. & Bay, G. (2014). World population stabilization unlikely this century. Science, 346(6206), pp. 234-237.
Gurdak, J. J., Walvoord, M. A. & McMahon, P. B. (2008). Susceptibility to Enhanced Chemical Migration from Depression-Focused Preferential Flow, High Plains Aquifer All rights reserved. Vadose Zone Journal, 7(4), pp. 1218-1230.
Hastie, T., & Tibshirani, R. (1996). Discriminant analysis by Gaussian mixtures. Journal of the Royal Statistical Society B, 58, pp. 155-176.
Hastie, T., Tibshirani, R. & Friedman, J. (2001). The elements of statistical learning: Data mining, inference, and prediction. New York: Springer.
Herrera‐Pantoja, M. & Hiscock, K. M. (2008). The effects of climate change on potential groundwater recharge in Great Britain. Hydrological Processes: An International Journal, 22(1), pp. 73-86.
Hoang, N.D. & Bui, D.T. (2018). Predicting earthquake-induced soil liquefaction based on a hybridization of kernel Fisher discriminant analysis and a least squares support vector machine: A multi-dataset study. Bull. Eng. Geol. Environ. 77, pp. 191–204.
Holman, R. R., Farmer, A. J., Davies, M. J., Levy, J. C., Darbyshire, J. L., Keenan, J. F. & Paul, S. K. (2009). Three-year efficacy of complex insulin regimens in type 2 diabetes. New England Journal of Medicine, 361(18), pp. 1736-1747.
Huberty, C. J. (1984). Issues in the use and interpretation of discriminant analysis. Psychological bulletin, 95(1), 156.
Huberty, C. J. (1994). Why multivariable analyses?. Educational and Psychological Measurement, 54(3), pp. 620-627.
Jaafarzadeh, M. S., Tahmasebipour, N., Haghizadeh, A., Pourghasemi, H. R. & Rouhani, H. (2021). Groundwater recharge potential zonation using an ensemble of machine learning and bivariate statistical models. Scientific Reports, 11(1), 5587.
Jaafarzadeh, M. S., Tahmasebipour, N., Haghizadeh, A., Pourghasemi, H. R. & Rouhani, H. (2022). Prediction of susceptible areas for groundwater recharge based on maximum entropy model. Advanced Applied Geology, 11(4), pp. 723-739. (In Persian)
Ju, J., Kolaczyk, E.D. & Gopal, S. (2003). Gaussian mixture discriminant analysis and sub-pixel land cover characterization in remote sensing. Remote Sensing of Environment, 84(4), pp. 550-560.
Jyrkama, M. I. & Sykes, J. F. (2007). The impact of climate change on spatially varying groundwater recharge in the Grand River watershed (Ontario). Journal of Hydrology, 338(3-4), pp. 237-250.
Kalantar, B., Al-Najjar, H.A., Pradhan, B., Saeidi, V., Halin, A.A., Ueda, N. & Naghibi, S.A. (2019). Optimized conditioning factors using machine learning techniques for groundwater potential mapping. Water, 11(9), pp. 1909.
Khan, D., Ejaz, N., Khan, T. A., Saeed, T. U. & Attaullah, H. (2015). Sustainable groundwater–a need of sustainable agriculture. International Journal of Civil Engineering, 13(3), pp. 305-320.
Li, X. & Wang, Y. (2013). Applying various algorithms for species distribution modelling. Integr. Zool. 8, pp. 124–135.
Li. X., Zhao. S., Yang. H., Cong. D. & Zhang. Z. (2017). A bi-band binary mask-based land-use change detection using Landsat 8 OLI imagery. Sustainability, 9(3), pp: 479.
Lim, T. S., Loh, W. Y. & Shih, Y. S. (2000). A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Machine learning, 40, pp. 203-228.
Liu. X., He. J., Yao. Y., Zhang. J., Liang. H., Wang. H. & Hong. Y. (2017). Classifying urban land use by integrating remote sensing and social media data. International Journal of Geographical Information Science, 31(8), pp. 1675-1696.
Lucà. F., Conforti. M. & Robustelli. G. (2011). Comparison of GIS-based gullying susceptibility mapping using bivariate and multivariate statistics: Northern Calabria, South Italy, Geomorphology, 134(3), pp. 297-308.
Maleki Rad, Z., Almasian, M., Pourkarmani, M. & Zarei Sahamiyeh, R. (2018). Application of GIS in the study of faults in Lorestan province. The first national geological conference of Iran.
Malet, J.-P. Maquaire, O. Thiery, Y. Puissant, A. van Beek, L.P. van Asch, T.W. & Remaître, A. (2007). Landslide risk zoning-what can be expected from model simulations? A tentative application in the south french alps. Guidel. Mapp. Areas Risk Landslides Eur. 23, 31.
Marker. M., Pelacani. S. & Schroder. B. (2012). A functional entity approach to predict soil erosion processes in a small Plio -Pleistocene Mediterranean catchment in Northern Chianti, Italy, Geomorphology, 125(4), pp. 530-540.
McLachlan, G.J. (2004). Discriminant analysis and statistical pattern recognition (Vol. 544). John Wiley & Sons.
Mehraban, M., Golkarian, A. & Khosravi, K. (2017). Evaluation of gully erosion sensitivity using the maximum entropy model (case study: Shorluk area, Razavi Khorasan province). The Third National Conference on Soil and Watershed Conservation, pp. 964-975. (In Persian)
Mirhashemi, S. H., Haghighatjou, P., Mirzaei, F. &
Panahi, M. (2018). Using CART algorithm in predicting groundwater table fluctuations inside and outside of an irrigation system (case study: irrigating area of Qazvin).
Iranian Journal of Soil and Water Research, 49(2), pp. 385-395. (In Persian)
Mogaji, K.A., Omosuyi, G.O., Adelusi, A.O. & Lim, H.S. (2016). Application of GIS-based evidential belief function model to regional groundwater recharge potential zones mapping in hardrock geologic terrain. Environmental Processes, 3(1), pp. 93-123.
Naghibi, S. A., Pourghasemi, H. R., Pourtaghi, Z. S. & Rezaei, A. (2015). Groundwater qanat potential mapping using frequency ratio and Shannon’s entropy models in the Moghan watershed, Iran. Earth Science Informatics, 8(1), pp. 171-186.
National Research Council. Panel on Discriminant Analysis Classification and Clustering (1988). Discriminant Analysis and Clustering.
Panel on Discriminant Analysis, Classification, and Clustering. (1989). Discriminant analysis and clustering. Statistical Science, 4, pp. 34-69.
Raghavendra, N. S. & Deka, P. C. (2015). Sustainable development and management of groundwater resources in mining affected areas: a review. Procedia Earth and Planetary Science, 11, pp. 598-604.
Rausch, J.R. & Kelley, K. (2009). A comparison of linear and mixture models for discriminant analysis under nonnormality. Behavior Research Methods, 41(1), pp.85-98.
Regmi. A.D., Devkota. K.C., Yoshida. K., Pradhan. B., Pourghasemi. H.R., Kumamoto. T. & Akgun. A. (2014). Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya, Arab J Geosci, 7 (2), pp. 725–742.
Richey, A. S., Thomas, B. F., Lo, M. H., Famiglietti, J. S., Swenson, S. & Rodell, M. (2015). Uncertainty in global groundwater storage estimates in a Total Groundwater S tress framework. Water Resources Research, 51(7), pp. 5198-5216.
Rwanga. S.S. & Ndambuki. J.M. (2017), Accuracy assessment of land use/land cover classification using remote sensing and GIS, International Journal of Geosciences, 8(04), pp: 611.
Salmani, H., Saber Chenari, K., Rostami Khalaj, M. & Jahandideh, O. (2016). Performance comparision of Information Value and Density Area Methods for spring potential in Ghurchay Watershed, Golestan Province. Hydrogeology, 1(1), pp. 12-28. (In Persian)
Samadi, J. &
Samadi, J. (2017). Spatial-Temporal Modeling of Groundwater Level Variations of Urban and Rural Areas in Kashan Aquifer Using GIS Techniques.
Journal of Environment Science and Technology, 19(1), pp. 63-77. (In Persian)
Schmid, U., Roesch, P., Krause, M., Harz, M., Popp, J. & Baumann, K. (2009). Gaussian mixture discriminant analysis for the single-cell differentiation of bacteria using micro-Raman spectroscopy. Chemometrics and Intelligent Laboratory Systems, 96(2), pp. 159-171.
Sekertekin. A., Marangoz. M. & Akcin. H. (2017). Pixel-based classification analysis of land use land cover using sentinel-2 and landsat-8 data, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences.
Thomas, A. & Tellam, J. (2006). Modelling of recharge and pollutant fluxes to urban groundwaters. Science of the total environment, 360(1-3), pp.158-179.
Wang, Guirong, Xi Chen, & Wei Chen. "Spatial prediction of landslide susceptibility based on GIS and discriminant functions." ISPRS International Journal of Geo-Information 9, no. 3 (2020): 144.
Zehtabian, G., Rafiei Imam, A., Alavi Panah, K. & Jafari, M. (2004). Investigating the underground water of Varamin plain for irrigation of agricultural lands. Geographical Research, 48, pp. 91-102. (In Persian)
Zhao, G. Pang, B. Xu, Z. Peng, D. & Xu, L. (2019). Assessment of urban flood susceptibility using semi-supervised machine learning model. Sci. Total Environ. 659, 94.