Elham Mehrabi Gohari; Roghaye Shahriyaripour; Ahmad Tagabadipoor; Seyed Roohollah Mousavi
Abstract
This study aims to evaluate and compare the efficiency of Artificial Neural Network (ANN), Regression Tree (RT) and Neuro-Fuzzy (ANFIS) models using a digital soil mapping framework to predict soil texture in a part of Sirjan province. Sampling was carried out at 84 observation points with a regular ...
Read More
This study aims to evaluate and compare the efficiency of Artificial Neural Network (ANN), Regression Tree (RT) and Neuro-Fuzzy (ANFIS) models using a digital soil mapping framework to predict soil texture in a part of Sirjan province. Sampling was carried out at 84 observation points with a regular grid of 2x2 km, and soil texture components were determined from the soil surface depth of 0 to 30 cm. Auxiliary variables included primary and secondary derivatives of the digital elevation model (DEM), a geomorphological map and remote sensing (RS) spectral indices. The appropriate variables selected using the Principal Component Analysis (PCA) feature selection method. Based on PCA, eight topographic variables and six vegetation indices and spectra from RS selected to predict soil texture components (sand, silt and clay). The efficiency of the models was evaluated using coefficient of determination (R2), mean error (ME), root mean square error (RMSE) and normalised root mean square error (nRMSE). The RMSE values in the neuro-fuzzy model compared with the regression tree model. The results of the neuro-fuzzy model were 1.43% for clay, 1.98% for sand and 2.1% for silt, which were 4.32%, 5% and 4.54% lower respectively compared to the regression tree model. The results of this study showed that the ANFIS model was more accurate in predicting clay, silt and sand compared to ANN and RT. Also, the geomorphology map, topographic wetness index, multi-resolution valley bottumn flatness index and Landsat 8 bands 5 and 6 had the highest relative importance in predicting soil texture components.
Hannaneh Sadat Sadat Mousavi; Afshin Danehkar; Ali Jahani; Vahid Etemad; Farnoush Attar Sahragard
Abstract
Different forms of land use development and human activities in protected areas are considered to be the main drivers of change, which have many effects on habitats, habitats, diversity and richness of species. The purpose of this research is to model the effect of human activities on the diversity of ...
Read More
Different forms of land use development and human activities in protected areas are considered to be the main drivers of change, which have many effects on habitats, habitats, diversity and richness of species. The purpose of this research is to model the effect of human activities on the diversity of vegetation using the artificial neural network method and determine the impact of ecological and human variables on them. This research was done in the Central Alborz protected area under the management of Alborz Province. To achieve the mentioned purpose, firstly, 101 plots and 101 soil samples were collected and, soil and vegetation analysis were performed on the samples. Finally, using the multilayer perceptron neural network method and using 18 input variables including physical and chemical variables of the soil, physiographic variables, and human factors variables , the effect of human activities on the diversity of vegetation in the study area modeled. According to the results, the vegetation diversity model with the structure of 1-5-18 according to the highest value of the coefficients of determination in the three categories of training, validation, and test data is equal to 0.82. 0.81 and 0.68 show the best structure optimization performance, distance from roads, electrical conductivity, and percentage of organic matter in the soil show the greatest effect on the diversity of vegetation in the study area. The model presented in this research is used as a decision support system in evaluating the effects of human activities on the diversity of vegetation in protected areas and provides the possibility of predicting the extent of these effects on the diversity of vegetation in these areas.
Zahra Khosravani; Mohammad Akhavan Ghalibaf; Maryam Dehghani; Vali Derhami; Mustafa Bolca
Abstract
The aim of this study was to model the subsidence of Abarkouh plain using inSAR and artificial intelligence techniques. At first, the subsidence map was prepared using the 46 Sentinel - 1 radar images (2014 – 2018) and radar interferometry techniques. Then, the Feedforward artificial neural network ...
Read More
The aim of this study was to model the subsidence of Abarkouh plain using inSAR and artificial intelligence techniques. At first, the subsidence map was prepared using the 46 Sentinel - 1 radar images (2014 – 2018) and radar interferometry techniques. Then, the Feedforward artificial neural network (ANN) algorithm was used to model the subsidence. In this algorithm, groundwater level changes (2014-2018), groundwater level, aquifer thickness, clay thickness in the aquifer and the clay thickness in the range of groundwater level changes (2014 - 2018) were introduced as input layers and the subsidence layer obtained from the radar interferometry method was introduced as an output layer to model training. These five parameters were obtained from the measured data set of 34 piezometer wells and 77 logs available in the archive of Regional Water Company of Yazd province. After initial checking of the data accuracy, the Kriging interpolation method was used to extend the five parameters to the whole region and the raster layers were prepared. The results of inSAR showed that maximum subsidence in parts of the studied area, i.e. in east, north - east and north, were 6, 2.7 and 1.6 cm/year respectively. Also, in order to verify the accuracy of the map resulting from using a neural network model, it was compared with the map with the radar imaging method. For this purpose, model evaluation criteria such as Nash-Sutcliffe (NS), RMSE,,MAE)and MARE were used, which 0.9524, 0.0018, 0.0012 and 0.1545 were obtained respectively.
Hamide Afkhami; mohammad dastorani; farzaneh fotouhi firuzabadi
Abstract
Due to the nature of the sediment data, selection of appropriate methods for processing the data before entering them to the artificial intelligence models can enhance the reliability of simulations results. In this study, the effects of sediment data processing procedures on ANN and ANFIS models outputs ...
Read More
Due to the nature of the sediment data, selection of appropriate methods for processing the data before entering them to the artificial intelligence models can enhance the reliability of simulations results. In this study, the effects of sediment data processing procedures on ANN and ANFIS models outputs in 7 Dez Basin stations were evaluated. Accordingly, three scenarios were considered: In the first scenario, original data was used without exerting any processing technique; in the second scenario, the data was normalized; and in the third scenario, logarithm of data were used according to logarithmic distribution governing. The simulation results showed that using data logarithm leads to higher performance and lower error, especially in stations where the best fit probability distribution is one of the log family distributions. Finally, among applied models, ANFIS showed the best performance with coefficient efficiency of 0.95 and RMSE of 5.4, MSE of 1.4 and ME of 0.42 in Biatoon gauging station and using the third scenario.
Hamidreza Moradi; Alireza Sepahvand; Parviz Abdolmaleki
Abstract
More than 30% of Iran's land is formed from mountainous areas. So each year, landslides cause damages to structures, residential areas and forests, creating sedimentation, muddy floods and finally deposit the sediments in reservoir dams. Therefore, for preventing of this damages and expressing the sensitivity ...
Read More
More than 30% of Iran's land is formed from mountainous areas. So each year, landslides cause damages to structures, residential areas and forests, creating sedimentation, muddy floods and finally deposit the sediments in reservoir dams. Therefore, for preventing of this damages and expressing the sensitivity rate of hillslopes, landslide hazard zonation is considered in prone areas. The purpose of this study is to determine the optimal structure of artificial neural network with different numbers of input factors for the landslide hazard zonation in the Haraz Watershed. First, the number of optimal epochs was determined to prevent network overlearning with trial and error method. Then, 14 neurons were determined in the hidden layer. Finally, the number of neurons was changed from 1 to 9 in the input layer. According to the obtained results, with increasing the number of neurons in the input layer, efficiency of Artificial Neural Network improved for landslide susceptibility mapping. In this research, nine neurons in the input layer, 14 neurons in the hidden layer and one neuron in the output layer were selected as the optimal structure. Root Mean Square Error and Descriptive Coefficient (R2) were equal to 0.051 and 0.962, respectively and the accuracy of landslide hazard zonation map was equal to 92.3%. Meanwhile, the results showed that about 35.14, 26.73, 14.59, 9.88, and 13.63 percent of all studied areas are located in stable, low, moderate, high and extremely hazardous areas, respectively.
A. Salajegheh; A. Fathabadi
Volume 62, Issue 2 , October 2009, , Pages 271-282
Abstract
Correct estimation of suspended sediment transported by a river is an important practice in water structure design, environmental problems and water quality issues. Conventionally, sediment rating curve used for suspended sediment estimation in rivers. In this method discharge and sediment discharge ...
Read More
Correct estimation of suspended sediment transported by a river is an important practice in water structure design, environmental problems and water quality issues. Conventionally, sediment rating curve used for suspended sediment estimation in rivers. In this method discharge and sediment discharge or concentration related using regression relation that generally is exponential model. Respect to uncertainty and nonlinear relation between discharge and sediment concentration, sediment rating curve has not enough efficiency for this purpose. In this study using Artificial Intelligent (Fuzzy Logic and Artificial Neural Network), suspended sediment in Karaj River was estimated. First, various neural network and fuzzy logic models established. For neural network and fuzzy logic, models with four neuron in hidden layers and FIS (Fuzzy Inference System) with four Gaussian membership functions, respectively were selected as the best structure. Finally, the results showed that fuzzy logic estimates the suspended sediment loud better than the other techniques and therefore is suggested for estimation of suspended sediment load.