[1] Barkhordari, J., Shabankareh, K., Mehrjerdi, M.Z. and Khalkhali, M. (2009). Study of water spreading effects on quantitative and qualitative changes of pastural cover: A case study in station of Sarchahan water spreading (Hormozgan province), Watershed Management Researches (Pajouhesh & Sazandegi), 82, 65-72 (In Persian).
[2] Blott, S.J. and Pye, K. (2001). Gradistat: A Grain size distribution and statistics package for the analysis of unconsolidated sediment, Earth Surface Processes and Landforms, 26, 1237-1248.
[3] Boroomandnasab, S., Charkhabi, H. and Pirani, A. (2005). Floodwater effect on infiltration rate of a floodwater spreading system in Moosian, 3rd International SWAT Conference, Zurich, Switzerland, July 13-15.
[4] Branson, F.A. (1956). Range forage production changes on a Water Spreader in southeastern Montana, Range Management, 9, 187-191.
[5] Dougherty W.J., Fleming, N.K., Cox, J.W. and Chittleborough, D.J. (2004). Phosphorus transfer in surface runoff from intensive pasture systems a various Scales: A Review, Journal of Environmental Quality, 33, 1-16.
[6] Fathinasab, H. (2000). Investigation of the effect water turbidity on permeability of soil in the floodwater spreading systems, M.Sc. thesis. University of Tarbiat Modares, 130 pp.
[7] Feiznia, S. (2008). Applied Sedimentology with emphasis on Soil Erosion & Sediment Production, Gorgan University of Agricultural Sciences And Natural Resources press, 356 p.
[8] Funseca, R.M.F. (2003). Dam reservoir sediments as fertilizers and artificial soils, case studies from Portugal and Brazil, Proceedings of International Symposium of the Kanazawa University, Japan, pp. 55-62.
[9] Gazavi, G.R. and Vali, A.A. (2002). Evaluation of the effects of flood spreading on some physical and chemical characteristics of soil, Agriculture Science and Natural Resources, 9(3), 17-27 (In Persian).
[10] Ghasemi, A., Hydari, H., Fakhri, F., Azadfar, D. and Sadeghi, S.M. (2009). Evaluation of the effect of flood spreading on some arid zone plants species with respect to the physico-chemical properties of desert soils (A case study, Bushehr province), Iranian journal of Range and Desert Reseach, 16(3), 362-374 (In Persian).
[11] Hawker, P. (2000). World commission on dams, A review of the role of dams and flood management, Burderop Park Swindon Wiltshire Press, USA, 561-574.
[12] Kadkhodapoor, M.A. and Mirjalili, A. (2009). The investigation on flood water spreading effects on the changes of soil fertility in flood water spreading station Herat Yazd, Watershed Management Researches (Pajouhesh & Sazandegi), 82, 12-20.
[13] Kamali, K., Arab-khedri, M., Esfandiari, M. and Zarinkafsh, M. (2005). An Investigation of the Effect of Source Area Lithology on Infiltration Rates of Alluvial Deposits, Iranian Journal of Natural Resources, 58(2), 288-299.
[14] Kia Heiraty, J., Khademi, H., Eslamian, S.S. and Charkhabi, A.S. (2002). Role of deposited sediments in changing physio-chemical properties of soil in the Mohghar floodwater spreading system, Agriculture Science and Natural Resources, 9(2), 27-40.
[15] Kowsar, S.A. (1996). An Introduction to Flood Mitigation and Optimization of Floodwater Utilization, Research Institute of Forests and Rangelands press, 522 p.
[16] Jordan, T.E., Whigham, D.F., Hofmockel, K.H. and Pittek, M.A. (2003). Nutrient and sediment removal by a restored wetland receiving Agricultural Runoff, Journal of Environmental Quality, 32, 1534-1547.
[17] Lotfollahzadeh, D., Zareh Mehrjerdi, M. and Kamali, K. (2007). Investigation the effects of floodwater spreading on some soil properties at Sarchahan station, Hormozgan province, Pajouhesh & Sazandegi, 76, 82-87.
[18] Langlois, J.L. and Mehuys, G.R. (2003). Intra-storm study of solute chemical composition of overland flow water in two agricultural fields, Journal of Environmental Quality, 32, 2301-2310.
[19] McDowell, R.W. and Sharpley, A.N. (2001). Approximating phosphorus release from soils to surface runoff and subsurface drainage, Journal of Environmental Quality, 30, 508-520.
[20] Mahdian, M.H., Hosseini Chegeni, E., Shariaty, M.H. and Khaksar, K. (2004). Investigating the effect of floodwater spreading on physic-chemical soil properties at Qoosheh station, Semnan province, Pajouhesh & Sazandegi, 61, 39-44 (In Persian).
[21] Mohammadnia, M. (1997). Infiltrate depth and variation clay minerals in the artificial recharge networks of Garbaygan Fasa aquifer, M.Sc. thesis. University of Shiraz, 185p.
[22] Naderi, A.A., Kowsar, S.A. and Sarafraz, A.A. (2000). Reclamation of a sandy desert through Floodwater Spreading: L Sediment-Induced changes in selected soil chemical and physical properties, Journal of Agriculture Science Technology, 2, 9-20.
[23] Sarreshtehdari, A. (2003). Impact assessment of flood spreading project on infiltation rate and soil fertility, Pajouhesh & Sazandegi, 62, 83-92.
[24] Sarreshtehdari, A. and Skidmore, A.K. (2005). Soil Properties Changing after Flood Spreading Project (Case study in Iran), ICID 21st European Regional Conference 2005,15-19May 2005, Frankfurt (Oder) and Slubice - Germany and Poland.
[25] Soil Conservation and Watershed Management Research Institute (2008). Floodwater spreading on the Aquifers and artificial recharge, Animal, cultivation and craft, 106, 21-22 (In Persian).
[26] Sokouti, R., Mahdian, M.H., Majidi, A., Mehdizadeh, M., Ahmadi, A., Mahdizadeh, M. and Khani, J. (2005). The study on the effect of Poldasht flood spreading scheme on the soil properties, West Azarbaaijan, Pajouhesh & Sazandegi, 67, 42-50 (In Persian).