[1] Abdollahi, J., Arzani, H., Baghestani, N. and Askarshahi, F.S.M. (2007). Rainfall and ground water table change influencing the seidletzia rosmarinous growth and development at the Chah-Afzal Ardakan, Journal of Range and Desert Reseach, 13(2), 74-81.
[2] Abdollahi, J., Arzani, H. and Naderi, H. (2011). Climatic factors affecting on production of forage Noudushan rangelands in Yazd Province, Journal of rangland, 5(1), 45-56.
[3] Akbarzadeh, M., Moghadam, M.R., Jalili, A., Jafari, M. and Arzani, H. (2007). Effect of precipitation on cover and production of rangeland plants in Polour, Journal of the Natural Resources, 60(1), 307-322.
[4] Alizadeh, A. (2013). Applied principle of hydrology, imam Reza University press, Mashhad.
[5] Andales, A., Derner, J., Ahuja, L. and Hart, R. (2006). Strategic and Tactical Precipitation of forage Production in North Mixed-Grass Prairie, Rangland Ecology & Management, 59(6), 576-584.
[6] Azarakhshi, M., Mahdavi, M. and Arzani, H. (2009). Determining the best drought indices in arid and semi-arid regions of the seen product of rangeland plants (Case Study: Qom,
Markazi and Ilam). Ph.D. thesis. 203PP.
[7] Baghestani Maybodi, N. and Zare, M.T. (2007). Investigation of relationship between annual precipitation and yield in steppic of Poosht-kooh region of Yazd province. Journal of Pajouhesh & Sazandegi, 75, 103-107.
[8] Bates, J.D., Svejcar, T., Miller, R.F. and Angell, R.A. (2006). The effects of precipitation timing on sagebrush steppe vegetation, Journal of Arid Environments, 67, 670-697.
[9] Benie, G., Kabore, S., Goita, K. and Courel, M. (2005). Remote sensing-based spatio-temporal modeling to predict biomass in Sahelian grazing ecosystem, Journal of Ecological Modelling, 184, 341-354.
[10] Borg, D. (2009). An Application of Drought Indices in Malta, Case Study, European Water, 26, 38-25.
[11] Elagib, N. and Elhag, M. (2011). Major climate indicators of ongoing drought Sudan, Journal of Hydrology, 409, 612-625.
[12] Evans, S., Byrne, K., K.Lauenroth, W.C. and Burke, I. (2011). Defining the limit to resistant in drought-tolerant grassland: long-term severe drought significantly reduces the dominant species and increases ruderals, Journal of Ecology, 99, 1500-1507.
[13] Ehsani, A., Arzani, H., Farahpour, M., Ahmadi, H., Jafari, H., Jalili, A., Mirdavoudi, H.R., Abasi, H.R. and Azimi, M.S. (2007). The effect of climatic conditions on range forage production in steppe rangelands, Akhtarabad of Saveh, Journal of Range and Desert Research, 14(2), 260-249.
[14] Elshorbagy, A., Corzo, G., Srinivasulu, S. and Solomatine, D. (2009). Experimental investigation of the predictive capabilities of soft computing techniques in hydrology, Centre for Advanced Numerical Simulation (CANSIM), Department of Civil & Geological Engineering, University of Saskatchewan, Saskatoon, SK, CANADA. 49 p.
[15] Forrest, A.S. and hyder, S.N. (1985). Estimating herbage production on semi-arid ranges in the intermountain region, Journal of Range Management, 15, 88-93.
[16] Hein, L. (2006). The impacts of grazing and rainfall variability on the dynamics of a sahelian rangeland, Journal of Arid Environments, 64, 488-504.
[17] Heitschmidt, R.K., Klement, K.D. and HaferKamp, M.R. (2005). Interactive Effects of drought and Grazing Northern Great Plains Rangelands, Rangeland Ecology & Management, 58, 19-11.
[18] Jankju, M. (2008). Individual Performances and the Interaction between Arid Land Plants Affected by the Growth Season Water Pulses, Arid Land Research and Management, 22, 123-133.
[19] Khumalo, G. and Holechek, J. (2005). Relationship between Chihuahan Desert Perennial Grass Product and Precipitation, Rangeland Ecology & Management, 58, 239-246.
[20] Liu, Y., Pan, Q., Zheng, S., Bai, Y. and Han, X. (2012). Intra-seasonal precipitation amount and pattern differentially affect primary production of two dominant species Inner Mongolia grassland, Acta Oecologia, 44, 2-10.
[21] McKee, T.B., Doesken, N.J. and Kleist, J. (1993). The Relationship of Drought Frequency and Duration to Time Scales, Paper Presented at 8th Conference on Applied Climatology, American Meteorological Society, Anaheim, CA.
[22] Mirjalili, A.B. and moosaei sanjareei, M. (2009). The effect of climate on range forage production in tangelaybid, Yazd, Second Regional Conference on Natural Resources and the Environment, Arsanjan.
[23] Mishra, A.K. and Singh, V.P. (2010). A review of drought concepts, Journal of Hydrology, 391, 202-216.
[24] Moghaddam, M., mohammadi, A. and Aghaei, M. (2010). Introduction to multivariate statistical methods, Paryvar press, Azarbaygan sharghi.
[25] Mosaedi, A. and Ghabaei Sough, M. (2012). Modification of Standardized Precipitation Index (SPI) Based on Relative Probability Distribution Function, Journal of Water and Soil, 25(5), 1206-1216.
[26] Munkhtsetseg, E., Kimura, R., Wang, J. and Shinoda, M. (2007). Pasture yield response to precipitation and high temperature in Mongolia, Journal of Arid Environments, 70, 94-110.
[27] Sharifan, H., Ghahreman, B., Alizadeh, A. and Mir.latifi, M. (2006). Comparison of the different methods of estimated Reference Evapotranspiration (Compound and Temperature) with standard method and analysis of aridity effects, Journal of Agric. Sci.Natur.Resour, 13(1), 19-30.
[28] Smart, A., Dunn, B. and Gates, R. (2005). Historical Weather Patterns: A Guide for Drought Planning, Rangelands, 27(2), 10-12.
[29] Smart, A., Dunn, B., Johnson, P., Xu, L., and Gates, R. (2007). Using weather data to explain herbage yield on three great plain plant communities, Rangeland Ecology & Management, 60(2), 146-153.
[30] Schwinning, S., Starr, B.I. and Ehleringer, J.R. (2005). Summer and winter drought in cold desert ecosystem (Colorado Plateau) part II: effects on plant carbon assimilation and growth, Journal of Arid Environments, 61, 61-78.
[31] Torell, L.A., McDaniel, K.C. and Koren, V. (2011). Estimating grass yield on blue grama range from seasonal rainfall and soil moisture measurements, Rangeland Ecology & Management, 64(1), 56-66.
[32] Tsakiris, G. and Vangelis, H. (2004). Towards a drought watch system based on spatial SPI, Journal of Water Resources Management, 18, 1-12.