[1]. Arzani, N. (2010). Water Harvesting and Urban Centers in Dryland Alluvial Megafans. Environmental Issues and Examples from Central Iran. Int. J. Environ. Sci. Dev., 1, 387–391.
[2]. Ghahari, G. R. and Pakparvar, M. (2007). Effect of floodwater spreading and consumption on groundwater resources in Gareh Bygone Plain. Iranian Journal of Range and Desert Research, 14(3) (28), 368-390.
[3]. Hashemi, H., Berndtsson, R. Kompani-Zare, M. and Persson, M. (2013). Natural vs. artificial groundwater recharge, quantification through inverse modeling. Hydrol. Earth Syst. Sci., 17, 637–650.
[4]. Hashemi, H., Berndtsson, R. and Kompani-Zare, M. (2012). Steady-State Unconfined Aquifer Simulation of the Gareh-Bygone Plain, Iran. The Open Hydrology Journal. 6, 58–67, 2012.
[5]. Hosseinimarandi, H., Adelpour, A. and Ghahari, G. (2011). Investigation of floodwater spreading effects on the groundwater quantity in the Gareh Baygone Plain ( in Farsi with an English abstract). Fars Research Center for Agriculture and Natural Resources. No.0100-040000-01-8301-83044.
[6]. Khorsandi, F., Vaziri, J. and Azizizahan, A. (2010).Haloculture Sustainable Use of saline Soil and Warter Resources in Agriculture. Iranian National Committee on Irrigation and Drainage (IRNCID). 141, pp322.
[7]. Konrad, M., Postma, D. and Kowalczyk, A. (2012). Variable infiltration and river flooding resulting in changing groundwater quality – A case study from Central Europe. Journal of Hydrology, 414-415, 211–219.
[8]. Kowsar, S.A. (1992). Desertification control through floodwater spreading in Iran, Unasylva (English Edn.), 43, 27–30.
[9]. Morris, B.L., Lawrence, A.R.L. Chilton, P.J.C., Adams, B. Callow, R.C. and Klink, B.A. (2003). Groundwater and its susceptibility to degradation: a global assessment of the problem and options for management. Early Warning and Assessment Report Series, RS. 03–3. United Nations Environment Programe, Nairobi, Kenya.
[10]. Niroomand, H.A. and Bozorgnia, A. (1976). The Analysis of Time series, 2ed Edition, Ferdowsi University of Mashhad Press, No.132.
[11]. Okkonen, J. and Kløve, B. (2012). Assessment of temporal and spatial variation in chemical composition of groundwater in an unconfined esker aquifer in the cold temperate climate of Northern Finland. Cold Regions Science and Technology, 71, 118–128.
[12]. Pooladian, A., and Kowsar, S.A. (1997). Salinity reduction in groundwater by floodwater spreading. 8th International Conference on Rainwater Catchment Systems, Tehran, I.R.Iran, pp.596-600.
[13]. Rebecca, M. P., Lischeid, G. Epting, J. and Huggenberger, P. (2012). Principal component analysis of time series for identifying indicator variables for riverine groundwater extraction management. Journal of Hydrology, 432-433, 137 – 144.
[14]. Sarah, T., Marc, L. Ian, C. Guillaume, F. and Christian, L. (2011). Arid zone groundwater recharge and Stalinization processes; an example from the Lake Eyre Basin, Australia. Journal of Hydrology, 408, 257–275.
[15]. Stigter, T.Y., Ribeiro, L. and Carvalho, D.A. (2006). Application of a groundwater quality index as an assessment and communication tool in agro-environmental policies – Two Portuguese case studies. Journal of Hydrology, 327, 578–591.
[16]. Todd, D.K. (1976). Groundwater Hydrology, 2ed Edition, John Willey and Sons Inc, New York.