[1] Aas, K., Czado, C., Frigessi, A. and Bakken, H. (2009). Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics, 44(2), 182–198.
[2] Ayantobo, O. O., Li, Y. and Song, S. (2019). Multivariate drought frequency analysis using four-variate symmetric and asymmetric Archimedean copula functions. Water Resources Management, 33(1), 103–127.
[3] Bedford, T. and Cooke, R. M. (2002). Vines: A new graphical model for dependent random variables. Annals of Statistics, 1031–1068.
[4] Dayal, K. S., Deo, R. C. and Apan, A. A. (2019). Development of copula-statistical drought prediction model using the standardized precipitation-evapotranspiration index. In Handbook of Probabilistic Models. Elsevier Inc.
[5] Favre, A. C., Adlouni, S. El, Perreault, L., Thiémonge, N. and Bobée, B. (2004). Multivariate hydrological frequency analysis using copulas. Water Resources Research, 40(1), 1–12.
[6] Grimaldi, S. and Serinaldi, F. (2006). Asymmetric copula in multivariate flood frequency analysis. Advances in Water Resources, 29(8), 1155–1167.
[7] Jiang,C.,Xiong,L.,Yan,L., Dong, J. and Xu, C.Y. (2019). Multivariate hydrologic design methods under nonstationary conditions and application to engineering practice. Hydrology and Earth System Sciences, 23(3), 1683–1704.
[8] Joe, H. (1997). Multivariate models and multivariate dependence concepts. CRC Press.
[9] Latif, S. and Mustafa, F. (2020). Trivariate distribution modelling of flood characteristics using copula function—A case study for Kelantan River basin in Malaysia. AIMS Geosciences, 6(1), 92–130.
[10] Mirabbasi, R., Fakheri-Fard, A. and Dinpashoh, Y. (2012). Bivariate drought frequency analysis using the copula method. Theoretical and Applied Climatology, 108(1–2), 191–206.
[11] Nash, J. E. and Sutcliffe, J. V. (1970). ’ L ~ E Empirical or Analytical Approaeb. Journal of Hydrology, 10(3), 282–290.
[12] Nguyen-Huy, T., Deo, R. C., An-Vo, D. A., Mushtaq, S. and Khan, S. (2017). Copula-statistical precipitation forecasting model in Australia’s agro-ecological zones. Agricultural Water Management, 191(September), 153–172.
[13] Pereira, G. and Veiga, Á. (2018). PAR(p)-vine copula based model for stochastic streamflow scenario generation. Stochastic Environmental Research and Risk Assessment, 32(3), 833–842.
[14] Salvadori, G. and De Michele, C. (2006). Statistical characterization of temporal structure of storms. Advances in Water Resources, 29(6), 827–842.
[15] Shafaei, M., Fakheri-Fard, A., Dinpashoh, Y., Mirabbasi, R. and De Michele, C. (2017). Modeling flood event characteristics using D-vine structures. Theoretical and Applied Climatology, 130(3–4), 713–724.
[16] Sklar, A., SKLAR, A. and Sklar, C. A. (1959). Fonctions de reprtition an dimensions et leursmarges.
[17] Snyder, W. M. (1962). Some possibilities for multivariate analysis in hydrologic studies. Journal of Geophysical Research, 67(2): 721–729.
[18] Wong, S. T., Gray, D. M. and Hydro-, D. (1958). Mean Annual Flood I N New England ’. 298–311.
[19] Vernieuwe, H., Vandenberghe, S., De Baets, B. and Verhoest, N. E. C. (2015). A continuous rainfall model based on vine copulas. Hydrology and Earth System Sciences, 19(6), 2685–2699.
[20] Zhang, L. and Singh, V. P. (2007). Trivariate flood frequency analysis using the Gumbel–Hougaard copula. Journal of Hydrologic Engineering, 12(4), 431–439.