Aguilera, H.,
Guardiola-Albert, G.,
Merino, L. M.,
Baquedano, C.,
Díaz-Losada, E.,
Ardila, P. A. R., &
Valsero, J. D. )2022(. Building inexpensive topsoil saturated hydraulic conductivity maps for land planning based on machine learning and geostatistics.
Catena, 208(2), 105788.
https://doi.org/10.1016/j.catena.2021.105788.
Babaeian, E., Homaee, M., Vereecken, H., Montzka, C., Norouzi, A. A., & van Genuchten, M. T. (2015). A comparative study of multiple approaches for predicting the soil–water retention curve: hyperspectral information vs. basic soil properties. Soil Science Society of America Journal, 79, 1043-8501. https://doi.org/10.2136/sssaj2014.09.0355.
Baltensweiler, A., Walthert, L., Hanewinkel, M., Zimmermann, S., & Nussbaum, M. (2021). Machine learning based soil maps for a wide range of soil properties for the forested area of Switzerland.
Geoderma Regional, 27, e00437.
https://doi.org/10.1016/j.geodrs.2021.e00437.
Banaie, M. H. (1998). Soil moisture and temperature regimes map of Iran. Soil and Water Research Institute. Ministry of Agriculture, Tehran, Iran, 1sheet. (In Persian).
Cheng, Y. Y., Gao, X. G., Liu, T. H., Li, L. X., Du, W., Hamad, A., & Wang, J. P. (2022). Effect of water content on strength of alluvial silt in The Lower Yellow River. Water, 14(20), 3231. https://doi.org/10.3390/w14203231.
Dharumarajan, S., Lalitha, M., Gomez, C., Vasundhara, R., Kalaiselvi, B., & Hegde, R. (2022). Prediction of soil hydraulic properties using VIS-NIR spectral data in semiarid region of Northern Karnataka Plateau.
Geoderma Regional, 28. e00475.
https://doi.org/10.1016/j.geodrs.2021.e00475.
Demattê, J., Sousa, A. A., Alves, M. C., Nanni, M. R., Fiorio, P. R., & Campos, R. C. (2008). Determining soil water status and other soil characteristics by spectral proximal sensing.
Geoderma, 135, 179-195.
https://doi.org/10.1016/j.geoderma.2005.12.002.
Espeby, B. (1990). An analysis of saturated hydraulic conductivity in a forested glacial till slope. Soil Science, 150(2), 485-494.
Farasati, M., Seyedian, M., & Fathaabadi, A. (2024). Predicting soil hydraulic conductivity using random forest, SVM, and LSSVM models. Natural Resource Modeling, 37(4), e12407.
Gao, X. S., Yi, X. I. A. O., Deng, L. J., Li, Q. Q., Wang, C. Q., Bing, L. I., & Min, Z .E .N .G. (2019). Spatial variability of soil total nitrogen, phosphorus and potassium in Renshou County of Sichuan Basin. China. Journal of Integrative Agriculture, 18(2), 279–289. https://doi.org/10.1016/S2095-3119(18)62069-6.
Gomez, C., Philippe, L., & Guillaume, C. (2008). Continuum moval versus PLSR method for clay and calcium carbonate content estimation from laboratory and airborne hyperspectral measurements. Geoderma. 148, 14148. https://doi.org/10.1016/j.geoderma.2008.09.016.
Hengl, T., Nussbaum, M., Wright, M. N., & Heuvelink, G .B .M. (2018). Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ, 6, e5518. https://doi.org/10.7287/peerj.preprints.26693v3.
Homaee, M. & Farrokhian Firouzi, A.
(2008). Deriving point and parametric pedotransfer functions of some gypsiferous soils.
Australian Journal of Soil Research, 46, 219-227.
https://doi.org/10.1071/SR07161.
Hosseini, F. S., Seo, M. B., Razavi-Termeh, S. V., Sadeghi-Niaraki, A., Jamshidi, M., & Choi, S. M. (2023). Geospatial Artificial Intelligence (GeoAI) and Satellite Imagery Fusion for Soil Physical Property Predicting. Sustainability, 15(19), 14125.
Janik, L. J., Merry, R. H. Forrester, S. T. Lanyon D. M. & Rawson, A. (2009). Rapid prediction of soil water retention using mid infrared spectroscopy. Soil Science Society of America Journal, 71(2), 507-514. https://doi.org/10.2136/sssaj2005.0391.
Khosravani, P., Baghernejad, M., Moosavi, A. A. & Rezaei, M. (2023). Digital mapping and spatial modeling of some soil physical and mechanical properties in a semi-arid region of Iran. Environmental Monitoring and Assessment, 195(11), 1367. https://doi.org/10.1007/s10661-023-11980-6.
Kim, I., Pullanagari, R. R., Deurer, M., Singh, R., Huh, K. Y., & Clothier, B. E. (2014). The use of visible and near-infrared spectroscopy for the analysis of soil water repellency.
European Journal of Soil Science, 65, 360-368.
https://doi.org/10.1111/ejss.12138.
Klute, A. & Dirksen, C. (1986). Hydraulic Conductivity and Diffusivity: Laboratory Methods. In: Klute, A., Ed.,
Methods of Soil Analysis. Part 1: Physical and Miner Alogical Methods, 2nd Edition, Agronomy Monograph No. 9, ASA, Madison, 687-734.
https://doi.org/10.2136/sssabookser5.1.2ed.c28.
Knotters, M., van Egmond, F. M., Bakker, G., Walvoort, D. J. J., & Brouwer, F. (2017). A selection of sensing techniques for mapping soil hydraulic properties. Wageningen Environmental Research, part of Wageningen UR, Wageningen.
Kubiak, K., Spiralski, M., Pompeu, J., Levavasseur, V., & Wawer, R. (2024). Advances in remote sensing for monitoring soil conditions in forest ecosystems: techniques, challenges, and applications.
Transactions on Aerospace Research. 277(34), 1-13.
https://doi.org/10.2478/tar-2024-0019.
Lalitha, M., Dharumarajan, S., Suputhra, A., Kalaiselvi, B., Hegde, R., Reddy, R. S., & Dwivedi, B. S. (2021). Spatial prediction of soil depth using environmental covariates by quantile regression forest model. Environmental Monitoring and Assessment, 193(10), 1-10.
Li, H., Zhang, J., Yang, X., Ye, M., Jiang, W., Gong, J. & Xu, Z. (2024). Bayesian optimization based extreme gradient boosting and GPR time-frequency features for the recognition of moisture damage in asphalt pavement. Construction and Building Materials, 434, 136675. https://doi.org/10.1016/j.conbuildmat.2024.136675.
Ma, D., Zhang, C., Li, T., & Feng, H. (2024). Novel calibration method for fine soil electrical resistivity based on van der Pauw configuration.
Measurement Science and Technology, 36(1), 017007. https://doi.org/
10.1088/1361-6501/ad9626.
Mahmoudzadeh, H., Matinfar, H. R., Taghizadeh-Mehrjardi, R., & Kerry, R. (2020). Spatial prediction of soil organic carbon using machine learning techniques in western Iran. Geoderma Regional, 21, e00260. https://doi.org/10.1016/j.geodrs.2020.e00260.
Mendes, W. D. S., Demattê, J. A. M., Barros, A. S .E., Salazar, D. F. U., & Amorim, M. T. A. (2020). Geostatistics or machine learning for mapping soil attributes and agricultural practices. Revista Ceres, 67(4), 330-336. https://doi.org/10.1590/0034-737X202067040010.
Minasny, B., & McBratney, A. B. (2016). Digital soil mapping: A brief history and some lessons.
Geoderma, 264, 301-311. https://doi.org/10.1016/j.geoderma.2015.07.017.
Mousavi, S. R., Sarmadian, F., & Omid, M. (2022). Three-dimensional mapping of soil organic carbon using soil and environmental covariates in an arid and semi-arid region of Iran, Measurement. 201(13):111706. https://doi.org/10.1016/j.measurement.2022.111706.
Mousavi, S. R., Sarmadian, F., Omid, M., & Bogaert, P. (2021). Digital Modeling of Three-Dimensional Soil Salinity Variation Using Machine Learning Algorithms in Arid and Semi-Arid lands of Qazvin Plain. Iranian Journal of Soil and Water Research, 52(7), 1915-1929. https://doi.org/10.22059/ijswr.2021.323030.668957. (In Persian).
Mzid, N., Castaldi, F., Tolomio, M., Pascucci, S., Casa, R., & Pignatti, S. (2022). Evaluation of agricultural bare soil properties retrieval from Landsat 8, Sentinel-2 and PRISMA satellite data.
Remote Sensing,
14(3), 714.
https://doi.org/10.3390/rs14030714.
Nanni, M. R., & Demattê, J. A. M. (2006). Spectral reflectance methodology in comparison to traditional soil analysis.
Soil Science Society of America Journal, 70(2), 393-407.
https://doi.org/10.2136/sssaj2003.0285.
Nazari, R., Ramezani Etedali, H., Nazari, B., & Collins, B. (2020). The impact of climate variability on water footprint components of rainfed wheat and barley in the Qazvin province of Iran. Irrigation and Drainage, 69(4), 826-843. https://doi.org/10.1002/ird.2487.
Nguyen, T.T, (2021). Predicting agricultural soil carbon using machine learning. Nature Reviews Earth & Environment, 2(12), 825-825. https://doi.org/10.1038/s43017-021-00243-y.
Ng, W., Minasny, B., Mendes, W.D.S., Demattˆe, J. A. M. (2020). The influence of training sample size on the accuracy of deep learning models for the prediction of soil properties with near-infrared spectroscopy data. Soil, 6, 565–578.
Niede, R., & Benbi, D. K. (2022). Integrated review of the nexus between toxic elements in the environment and human health.
AIMS Public Health, 9(4), 758. https://doi.org/
10.3934/publichealth.2022052.
Ottoni, M. V., Teixeira, W. G., Reis, A. M. H. D., Pimentel, L. G., Souza, L. R., Albuquerque, J. A., ... & Curi, N. (2025). Saturated hydraulic conductivity and steady-state infiltration rate database for Brazilian soils.
Revista Brasileira de Ciência do Solo, 49, e0240003.
https://doi.org/10.36783/18069657rbcs20240003.
Padarian, J.,
Minasny, B., &
McBratney, A. B. (2020). Machine learning and soil sciences: a review aided by machine learning tools.
Soil, 6(1), 35-52. https://doi.org/10.5194/soil-6-35-2020, 2020.
Páez-Bimos, S., Molina, A., Calispa, M., Delmelle, P., Lahuatte, B., Villacís, M., ... & Vanacker, V. (2023). Soil–vegetation–water interactions controlling solute flow and chemical weathering in volcanic ash soils of the high Andes. Hydrology and Earth System Sciences, 27(7), 1507-1529.
Parsaie, F., Farrokhian Firouzi, A., Mousavi, S. R., Rahmani, A., Sedri, M. H., & Homaee, M. (2021). Large-scale digital mapping of topsoil total nitrogen using machine learning models and associated uncertainty map. Environmental Monitoring and Assessment, 193, 1-15. https://doi.org/10.1007/s10661-021-08947-w.
Rahmani, A., Sarmadian, F., & Arefi, H. (2022). Digital mapping of surface soil thickness and its associated uncertainty using machine learning approach in a part of arid and semi-arid lands of Qazvin Plain.
Iranian Journal of Soil and Water Research, 53(3), 585-602.
10.22059/ijswr.2022.338007.669195. (In
Persian).
Rezaei, M., Mousavi, S. R., Rahmani, A., Zeraatpisheh, M., Rahmati, M., Pakparvar, M. & Cornelis, W. (2023). Incorporating machine learning models and remote sensing to assess the spatial distribution of saturated hydraulic conductivity in a light-textured soil.
Computers and Electronics in Agriculture, 209, 107821.
https://doi.org/10.1016/j.compag.2023.107821.
Sabetizade, M., Gorji, M., Roudier, P., & Zolfaghari, A. A. (2021). Combination of MIR spectroscopy and environmental covariates to predict soil organic carbon in a semi-arid region.
Catena, 196. 1-12.
https://doi.org/10.1016/j.catena.2020.104844.
Santra, P., Sahoo, R. N., Das, B. S., Samal, R. N., Pattanaik, A. K., & Gupta, V. K. (2009). Estimation of soil hydraulic properties using proximal spectral reflectance in visible, near-infrared, and shortwave-infrared (VIS–NIR–SWIR) region.
Geoderma, 152(3-4), 338-349.
https://doi.org/10.1016/j.geoderma.2009.07.001.
Schneider, W. E., & Young, R. (1997). Spectroradiometry methods. Handbook of Applied Photometry, ed. Casimer De Cusatis, 252.
Soil Survey Staff, (2022). Keys to soil Taxonomy. In: U.S. Department of Agriculture, Natural Resources Conservation Service, thirteenth ed. 18-77. Washington, DC.
Taghizadeh-Mehrjardi, R., Minasny, B., Sarmadian, F., & Malone, B. P. (2014). Digital mapping of soil salinity in Ardakan region, central Iran. Geoderma, 213, 15–28. https://doi.org/10.1016/j.geoderma.2013.07.020.
Wang, Z., Wu, W., & Liu, H. (2024). Spatial estimation of soil organic carbon content utilizing PlanetScope, Sentinel-2, and Sentinel-1 data.
Remote Sensing, 16(17), 3268.
https://doi.org/10.3390/rs16173268.
Xu, C.
Xu, X.,
Liu, M.
Liu, W.
Yang, J.,
Luo, W.,
Zhang, R., &
Kiely, G. (2017). Enhancing pedotransfer functions (PTFs) using soil spectral reflectance data for estimating saturated hydraulic conductivity in southwestern China.
Catena, 158: 350–356.
https://doi.org/10.1016/j.catena.2017.07.014.
Zarei, A., Hasanlou, M., & Mahdianpari, M. (2021). A comparison of machine learning models for soil salinity estimation using multi-spectral earth observation data. ISPRS annals of the photogrammetry, remote sensing and spatial information sciences, 3, 257-263. https://doi.org/10.5194/isprs-annals-V-3-2021-257-2021.
Zeitfogel, H., Feigl, M., & Schulz, K. (2022). Soil information on a regional scale: Two machine learning based approaches for predicting saturated hydraulic conductivity. Geoderma, 433, 116418. https://doi.org/10.1016/j.geoderma.2023.116418.