نشریه علمی - پژوهشی مرتع و آبخیزداری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 بخش تحقیقات حفاظت خاک و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع‌طبیعی استان فارس، سازمان تحقیقات، آموزش و ترویج کشاورزی، شیراز، ایران

2 بخش تحقیقات حفاظت خاک و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع‌طبیعی استان کردستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، سنندج، ایران

3 پژوهشکده حفاظت خاک و آبخیزداری، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران ایران

10.22059/jrwm.2025.390477.1804

چکیده

اندازه‌گیری میدانی میزان هدررفت خاک ناشی از فرسایش‌ خندقی، بسیار زمان‌بر و هزینه‌بر بوده بنابراین اندازه‌گیری مستقیم فرسایش خندقی در سطوح وسیع فرآیندی زمان‌بر، هزینه‌بردار و طاقت‌فرسا است. به این منظور، پژوهش حاضر، نسبت به انجام این مهم از طریق مدل‌سازی هدررفت خاک ناشی از فرسایش خندقی با استفاده از مدل‌های یادگیری ماشینی جنگل تصادفی و ماشین‌بردار پشتیبان و ارزیابی کارایی آنها در حوزه آبخیز ماهورمیلاتی واقع در جنوب‌غرب استان فارس اقدام کرد. در طی چهار سال (1399 لغایت 1402)، اندازه‌گیری‌های میدانی پارامترهای ابعادی 70 خندق انجام شد. در فرآیند مدل‌سازی، 15 عامل محیطی، به‌عنوان متغیرهای مستقل و میزان هدررفت خاک خندق‌ها به‌عنوان متغیر وابسته در نظر گرفته شدند و مدل‌سازی با رویکرد اعتبارسنجی متقاطع انجام شد. دقت مدل‌ها با استفاده از معیارهای کمی خطای جذر میانگین مربعات (RMSE)، ضریب تعیین (R2)، ریشه مربعات خطا (RSR) و همبستگی تطابق (d) مورد بررسی قرار گرفت. میزان هدررفت خاک خندق‌ها در دوره مورد مطالعه 15300/94 تن بود. نتایج ارزیابی دقت پیش‌بینی مدل‌ها نشان داد مدل جنگل تصادفی از نظر معیارهای ارزیابی، نسبت به مدل ماشین‌بردار پشتیبان از عملکرد بهتری برخوردار بود و به‌عنوان مدل برتر برای پیش‌بینی میزان هدررفت خاک ناشی از فرسایش خندقی معرفی شد. یافته‌ها نشان داد "مدل‌سازی" می‌تواند در صرفه‌جویی وقت و هزینه، خدمات ارزنده‌ای به مدیریت حفاظت آب و خاک ارائه دهد. به این منظور پیشنهاد می‌شود استفاده از مدل‌های مبتنی بر هوش مصنوعی و ساختار یادگیری ماشینی در پژوهش‌های آینده مورد توجه بیشتری قرار گیرد.

کلیدواژه‌ها

عنوان مقاله [English]

Modeling soil loss due to gully erosion using random forest and support vector machine models and evaluating their efficiency

نویسندگان [English]

  • Seyed Masoud Soleimanpour 1
  • Omid Rahmati 2
  • Samad Shadfar 3
  • Maryam Enayati 1

1 Soil Conservation and Watershed Management Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran

2 Soil Conservation and Watershed Management Research Department, Kurdistan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Sanandaj, Iran

3 Soil Conservation and Watershed Management Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran

چکیده [English]

Field measurements of soil loss due to gully erosion are very time-consuming and costly, so direct measurement of gully erosion at large scales is a time-consuming, costly, and labor-intensive process. For this purpose, the present study attempted to accomplish this by modeling soil loss due to gully erosion using random forest and support vector machine learning models and evaluating their efficiency in the Mahurmilati watershed located in the southwest of Fars province. Field measurements of dimensional parameters of 70 gullies were conducted over four years (2021 to 2024). In the modeling process, 15 environmental factors were considered as independent variables and the rate of soil loss in ditches as the dependent variable, and modeling was performed with a cross-validation approach. The accuracy of the models was evaluated using quantitative criteria such as root mean square error (RMSE), coefficient of determination (R2), root mean square error (RSR), and correlation coefficient (d). The rate of soil loss in gullies during the study period was 15300.94 tons. The results of the model prediction accuracy evaluation showed that the random forest model has better performance than the support vector machine model in terms of evaluation criteria and was introduced as the superior model for predicting the rate of soil loss due to gully erosion. The findings showed that "modeling" can provide valuable services to water and soil conservation management in saving time and money. For this purpose, it is suggested that the use of artificial intelligence-based models and machine learning structures be given more attention in future research.

کلیدواژه‌ها [English]

  • Artificial intelligence
  • gully erosion
  • machine learning
  • modeling
  • soil loss
Aboutaib, F., Krimissa, S., Pradhan, B., Elaloui, A., Ismaili, M., Abdelrahman, K., Eloudi, H., Ouayah, M., Ourribane, M., & Namous, M. (2023). Evaluating the effectiveness and robustness of machine learning models with varied geo-environmental factors for determining vulnerability to water flow-induced gully erosion. Sec. Environmental Informatics and Remote Sensing, 11, 3389. https://doi.org/10.3389/fenvs.2023.1207027
Arfouni, I., Algouti, A., Algouti, A.A., & Es-Sadiq, R. (2024). Analysis of Soil Water Erosion Risk Using Machine Learning Techniques – A Case Study of Ourika Watershed in Morocco. Ecological Engineering & Environmental Technology (EEET), 25(10): 324-338. https://doi.org/10.12912/27197050/191903
Bammou, Y., Benzougagh, B., Abdessalam, O., Brahim, I., Kader, Sh., Spalevic, V., Sestras, P., & Ercişli, S. (2024). Machine learning models for gully erosion susceptibility assessment in the Tensift catchment, Haouz Plain, Morocco for sustainable development. Journal of African Earth Sciences, 213, 105229. https://doi.org/10.1016/j.jafrearsci.2024.105229
Boali, A., Hosseinalizadeh, M., Kariminejad, N., Asgari, H.R., Behbahani, A.M., Naimi, B., Shafaie, V., & Movahedi Rad, M. (2025). Evaluation of early warning signals for soil erosion using remote sensing indices in northeastern Iran. Scientific Reports, 15, 9742. https://doi.org/10.1038/s41598-025-94926-x
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. http://dx.doi.org/10.1023/A:1010933404324
Casali, J., Loizu, J., Campo, MA., De Santisteban, LM., & Alvarez-Mozos, J. (2006). Accuracy of methods for field assessment of rill and ephemeral gully erosion. Catena, 67(2), 128-138. https://doi.org/10.1016/j.catena.2006.03.005
Cardoso, D.P., Ossani, P.C., Cirillo, M.A., Silva, M.L.N., & Avanzi, J.C. (2024). Using Machine Learning to Propose a Qualitative Classification of Risk of Soil Erosion. AgriEngineering6(4), 4280-4293. https://doi.org/10.3390/agriengineering6040241
De Luna, E., Vanderlinden, K., De haro, J.M., Laguna, A., Poesen, J., & Giraldez, J.V. (2000). Monitoring of long term gully head advance in south-east Spain using GIS. International Symposium on Gully Erosion under Global Change, 53.
Fars Province Meteorological Department website. (2024). Reporting meteorological statistics of Fars Province cities (https://www.farsmet.ir/ReportAmar.aspx)
Filho, J.P.M, Guerra, A.J.T., Cruz, C.B.M., Jorge, M.C.O., & Booth, C.A. (2024). Machine Learning Models for the Spatial Prediction of Gully Erosion Susceptibility in the Piraí Drainage Basin, Paraíba Do Sul Middle Valley, Southeast Brazil. Land, 13(10), 1-21. https://doi.org/10.3390/land13101665
Gelete, T.B., Pasala, P., Abay, N.G., Woldemariam, G.W., Yasin, K.H., Kebede, E., & Aliyi, I. (2024). Integrated machine learning and geospatial analysis enhanced gully erosion susceptibility modeling in the Erer watershed in Eastern Ethiopia. Sec. Environmental Informatics and Remote Sensing, 12, 1410741. https://doi.org/10.3389/fenvs.2024.1410741
Genuer, R., Poggi, J.M., & Tuleau-Malot, C. (2010). Variable selection using random forests. Pattern recognition letters, 31(14), 2225-2236. https://doi.org/10.1016/j.patrec.2010.03.014
Liu, G., Arabameri, A., Santosh, M., & Asadi Nalivan, O. (2023). Optimizing machine learning algorithms for spatial prediction of gully erosion susceptibility with four training scenarios. Environ Sci Pollut Res, 30(16), 46979-46996. https://doi.org/10.1007/s11356-022-25090-2
Mallick, J., Alqadhi, S., Talukdar, S., Sarif, M.N., Nasrin, T., & Abdo, H.Gh. (2025). Evaluating soil erosion zones in the Kangsabati River basin using a stacking framework and SHAP model: a comparative study of machine learning approaches. Environmental Sciences Europe, 37, 34. https://doi.org/10.1186/s12302-025-01079-9
Mokarram, M., & Pourghasemi, H.R. (2024). Prediction of soil erosion using machine learning. Chapter 18. Advanced Tools for Studying Soil Erosion Processes, 307-322. https://doi.org/10.1016/B978-0-443-22262-7.00030-8
Mousavi, S.R., Sarmadian, F., Omid, M., & Bogaert, P. (2022). Application of Machine Learning Models in Spatial Estimation of Soil Phosphorus and Potassium in Some Parts of Abyek Plain. Journal of Soil Research, 35(4): 397-411. (In Persian). https://doi.org/10.22092/ijsr.2022.355198.618  
Nika, T. (2024). Empirical and Machine Learning Models for Soil Erosion Risk Assessment: A Case Study of Tsageri Municipality, Georgia. Journal of Geography, Environment and Earth Science International, 28(11): 148-162. https://doi.org/10.9734/jgeesi/2024/v28i11843
Nur, I.S., Debabrata, S., Sunil, S., & Prolay, M. (2024). Application of Machine Learning Algorithms for Soil Erosion Susceptibility Estimation in Gumani River Basin, Eastern India. Journal of the Geological Society of India, 100(3): 320-334. https://doi.org/10.17491/jgsi/2024/173839
Priyadharshini, V.M., Aldehim, Gh., Negm, N., & Subathradevi, S. (2025). Integrating geospatial techniques and machine learning for assessing soil erosion and associated geomorphic risks. Journal of South American Earth Sciences, 156(1), 105463. https://doi.org/10.1016/j.jsames.2025.105463
Rahimi, M., Amirdelavar, M., Jamshidi, M., & Sharififar, A. (2023). Modeling Spatial Distribution of Soil Classes Using Machine Learning Algorithms in Some Parts of Zanjan Provice. Journal of Soil Research, 37(2): 147-165. (In Persian). https://doi.org/10.22092/ijsr.2023.361649.698
Rahmati, O., Tahmasebipour, N., Haghizadeh, A., Pourghasemi, H.R., & Feizizadeh, B. (2017). Evaluation of different machine learning models for predicting and mapping the susceptibility of gully erosion. Geomorphology, 298, 118-137. https://doi.org/10.1016/j.geomorph.2017.09.006
Soleimanpour, S.M. (2012). Investigation and comparison of the thresholds controlling gully erosion in different climates of Fars province. Ph.D. Thesis, Science and Watershed Engineering, Islamic Azad University, Tehran Science and Research Branch. Faculty of Agriculture and Natural Resources. 594 pp. (In Persian)
Soleimanpour, S.M., Rahmati, O., Shadfar, S., & Enayati, M. (2025). Estimation of soil volume loss due to gully erosion using machine learning models and introduction of the most appropriate model (Case study: Fars province). Final report of the research project. Soil Conservation and Watershed Management Research Institute. 75 pp. (In Persian
Soleimanpour, S.M., Soufi, M., Rousta, M.J., Shadfar, S., Jowkar, L., & Keshavarzi, H. (2018). Investigation the Effectiveness of Influencing Factors on Extension of Gully Erosion. Final Report of the Research Project, Soil Conservation and Watershed Management Research Institute Publications. 59 pp. (In Persian)
Soufi, M. (2004). Investigation of morphoclimatic characteristics of gullies in Fars province. Final report of the research project, Soil Conservation and Watershed Management Research Institute Publications, 130 pp. (In Persian)
Tebebu, T., Abiy, A., Dahlke, H., Easton, Z., Tilahun, S., Collick, A., Kidnau, S., Moges, S., & Dadgari, F. (2010). Surface and subsurface flow effect on permanent gully formation and upland erosion near Lake Tana in the northern highlands of Ethiopia. Hydrology and Earth System Sciences Discussions, 7(4), 2207-2217. https://doi.org/10.5194/hessd-7-5235-2010
Wang, J., Yang, J., Li, Z., Ke, L., Li, Q., Fan, J., & Wang, X. (2025). Research on Soil Erosion Based on Remote Sensing Technology: A Review. Agriculture15(1), 18. https://doi.org/10.3390/agriculture15010018
Were, K., Kebeney, S., Churu, H., Mumo Mutio, J., Njoroge, R., Mugaa, D., Alkamoi, B., Ng’etich, W., & Ram Singh, B. (2023). Spatial Prediction and Mapping of Gully Erosion Susceptibility Using Machine Learning Techniques in a Degraded Semi-Arid Region of Kenya. Land, 12(4), 1-19. https://doi.org/10.3390/land12040890
Zeghmar, A., Mokhtari, E., & Marouf, N. (2024). A machine learning approach for RUSLE-based soil erosion modeling in Beni Haroun dam Watershed, Northeast Algeria. Earth Science Informatics, 17(4): 2921-2936. https://doi.org/10.1007/s12145-024-01305-7