نشریه علمی - پژوهشی مرتع و آبخیزداری

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران

10.22059/jrwm.2025.390691.1805

چکیده

آزمایش، با نه دمای ثابت (5، 10، 15، 20، 25، 30، 35 ، 40 و 45 درجه سانتی‌گراد) جهت بررسی جوانه‌زنی و تعین دمای کاردینال گیاه کلمو در سال 1399 در دانشگاه علوم کشاورزی و منابع طبیعی خوزستان در قالب طرح کاملاً تصادفی در 8 تکرار انجام گرفت. بیشترین درصد جوانه‌زنی معادل 86 درصد در دمای 25 درجه سانتی‌گراد به دست آمد. درصد جوانه‌زنی در دماهای 10، 15، 20، 30 ، 35 و 40 درجه سانتی-گراد به ترتیب 77، 83، 85، 85، 34 و 13 درصد بود. در دو دمای 5 و 45 درجه سانتی‌گراد جوانه‌زنی مشاده نگردید. رابطه بین زمان آبنوشی و درصد جوانه‌زنی تجمعی از معادله سه پارامتره سیگموئیدی پیروی نمود. بر اساس این معادله، کمترین زمان لازم برای رسیدن به 50 درصد جوانه ‌زنی (T50) در دمای 25 و 30 درجه سانتی‌گراد (33 و 34 ساعت) و بیشترین در دو دمای 10 و 40 درجه سانتی‌گراد (106 و 141 ساعت) مشاهده گردید. T50 برای دماهای 15، 20 و 35 نیز به‌ترتیب 76،37 و 51 ساعت پیش‌بینی گردید. بر اساس مدل دندانه مانند دمای پایه، دمای مطلوب تحتانی، دمای مطلوب فوقانی و دمای سقف به‌ترتیب 16/5، 91/22، 52/29 و43/45 درجه سانتی‌گراد پیش‌بینی گردید. نتایج تحقیق حاضر نشان داد که این گیاه با توجه به شرایط محل رویش در ماه‌های آبان تا دی‌ماه می‌تواند بیشترین درصد جوانه‌زنی را داشته باشد و از این رو در این ماه‌ها برنامه برای مدیریت این گیاه مرتعی (پراکنش بذر و احیای مراتع) و همچنین مسایل مربوط به مدیریت چرای دام بایستی مدنظر قرار گیرد.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation of Different Temperatures on Germination and Determination of Cardinal Temperatures of the Rangeland Plant Physorhynchus chamaerapistrum (Boiss.) Boiss as the First Report in Iran

نویسندگان [English]

  • Ahmad Zare
  • Sayed Amir Moosavi

Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan

چکیده [English]

An experiment with 10 constant temperatures (5, 10, 15, 20, 25, 30, 35, 40, and 45°C), was conducted in 2019 at the Agricultural Sciences and Natural Resources University of Khuzestan based on completely randomized design (CRD) with 8 replications to investigate germination and determine the cardinal temperature of Physorhynchus chamaerapistrum (Boiss.) Boiss. The highest seed germination was 86% at 25°C. Germination percentages at temperatures of 10, 15, 20, 30, 35, and 40°C were 77%, 83%, 85%, 85%, 34%, and 13%, respectively. No germination was observed at 5 and 45°C. The relationship between imbibition time and cumulative germination percentage was described by a three-parameter sigmoid equation. According to this equation, the results indicated that the shortest time required to reach 50% germination (T50) was observed at 25 and 30°C (33 and 34 hours), and the longest at 10 and 40°C (106 and 141 hours). T50 for temperatures of 15, 20, and 35°C was predicted to be 76, 37, and 51 hours, respectively. According to the dent-like model, the base temperature, lower optimal temperature, upper optimal temperature, and ceiling temperature were predicted to be 16.5, 22.91, 29.52, and 43.45°C, respectively. The results of this study showed that this plant could have the highest germination percentage from November to January, considering the growth conditions. Therefore, during these months, plans for managing this rangeland plant (seed dispersal and rangeland restoration) and issues related to grazing management should be considered.

کلیدواژه‌ها [English]

  • Base temperature
  • Ceiling Temperature
  • dent-like model
  • Grazing Management
  • Rangeland Restoration
  • Seedling Establishment
Adam, N. R., Dierig, D. A., Coffelt, T. A., Wintermeyer, M. J., Mackey, B. E., & Wall, G. W. (2007). Cardinal temperatures for germination and early growth of two Lesquerella species. Industrial Crops and Products, 25(1), 24-33.
Alper, B. A., & Kamil, K. (2015). A comprehensive approach of Botanical Compositions and Forage Yields in a Rangeland. Research Journal of Biotechnology, 10(10), 14-20.
Alvarado, V., & Bradford, K. (2002). A hydrothermal time model explains the cardinal temperatures for seed germination. Plant, Cell & Environment, 25(8), 1061-1069.
Álvarez-Holguín, A., Morales-Nieto, C. R., Corrales-Lerma, R., Ochoa-Rivero, J. M., Ponce-García, O. C., Prieto-Amparán, J. A., Vega-Mares, J. H., & Villarreal-Guerrero, F. (2024). Grass species with potential for rangelands restoration in northern Mexico: an assessment with environmental niche modeling. Scientific reports, 14(1), 6318.
Andreucci, M., Moot, D., Black, A., & Sedcole, R. (2016). A comparison of cardinal temperatures estimated by linear and nonlinear models for germination and bulb growth of forage brassicas. European Journal of Agronomy, 81, 52-63.
Ansari, O., Gherekhloo, J., Kamkar, B., & Ghaderi-Far, F. (2016). Breaking seed dormancy and determining cardinal temperatures for Malva sylvestris using nonlinear regression. Seed Science and Technology, 44(3), 447-460.
Azimi, R., Heshmati, G. A., Kianian, M. K., & Hossein, J. S. (2016). Investigating the germination characteristics of Poterium sanguisorba seeds under the influence of thermal treatments for pasture establishment. Journal of Rangeland Science. 6(1), 53-62 (InPersian).
Baskin, C. C., & Baskin, J. M. (2006). The natural history of soil seed banks of arable land. Weed Science, 54(3), 549-557.
Beyrampour, F., Moameri, M., Ghorbani, A., Sharari, M., & Khalaki, M. A. (2022). Effect of some facilitators on growth characteristics of Trifolium repens L. Journal of Rangeland, 16(1): 191-205 (InPersian).
Bittencourt, H., Bonome, L., Trezzi, M., Vidal, R., & Lana, M. (2017). Seed germination ecology of Eragrostis plana, an invasive weed of South American pasture lands. South African Journal of Botany, 109, 246-252.
Bybordi, A., & Tabatabaei, J. (2009). Effect of salinity stress on germination and seedling properties in canola cultivars (Brassica napus L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 37(2), 71-76.
Calha, I., Oliveira, M. d. F., & Reis, P. (2022). Weed Management Challenges in Rice Cultivation in the Context of Pesticide Use Reduction: A Survey Approach. Sustainability, 15(1), 244.
Chauhan, B. S., Gill, G., & Preston, C. (2006). African mustard (Brassica tournefortii) germination in southern Australia. Weed Science, 54(5), 891-897.
Darvishi, L., Barani, H., Akbarloo, M., & Ghelichnia, H. (2021). Preferential value of Allium species grazed by Shal using timing method in the summer rangeland of Noor rud. Journal of Rangeland, 15(1), 98-109 (InPersian).
Drewry, J., Cameron, K., & Buchan, G. (2008). Pasture yield and soil physical property responses to soil compaction from treading and grazing—a review. Soil Research, 46(3), 237-256.
Ertuş, M. M. (2023). Determination of the botanical composition of the otluca village pasture in hakkari province. topics in, 3.
Espigares, T., & Peco, B. (1993). Mediterranean pasture dynamics: the role of germination. Journal of Vegetation Science, 4(2), 189-194.
Fani, E., & Hajihashemi, S. (2020). Effect of foliar application of silica on some physiological traits of (Physorrhynchus chamaerapistrum L.) medicinal plant. Journal of Plant production Sciences, 10(1), 92-10 (InPersian).
Felix, F. C., Medeiros, J. A. D. d., Ferrari, C. d. S., Pacheco, M. V., & Torres, S. B. (2020). Molecular aspects during seed germination of Erythrina velutina Willd. under different temperatures (Part 1): reserve mobilization. Journal of Seed Science, 4, 2e202042029.
Galindez, G., Seal, C., Daws, M., Lindow, L., Ortega‐Baes, P., & Pritchard, H. (2017). Alternating temperature combined with darkness resets base temperature for germination (Tb) in photoblastic seeds of Lippia and Aloysia (Verbenaceae). Plant Biology, 19(1), 41-45.
Ghaffari, M., Ghamari Zare, A., Asadi Corom, F., & Sedaghati, M. (2021). Chromosome studies on some species of Angiosperms from Iran. Rostaniha, 22(2), 223-229 (InPersian).
Gresta, F., Cristaudo, A., Onofri, A., Restuccia, A., & Avola, G. 2010). Germination response of four pasture species to temperature, light, and post-harvest period. Plant Biosystems, 144(4), 849-856.
Gutterman, Y. (2002). Survival strategies of annual desert plants. Springer Science & Business Media.
Hajihashemi, S., Skalicky, M., Brestic, M., & Pavla, V. (2020). Cross-talk between nitric oxide, hydrogen peroxide and calcium in salt-stressed Chenopodium quinoa Willd. At seed germination stage. Plant Physiology and Biochemistry, 154, 657-664.
Harris, D., Pathan, A. K., Gothkar, P., Joshi, A., Chivasa, W., & Nyamudeza, P. (2001). On-farm seed priming: using participatory methods to revive and refine a key technology. Agricultural Systems, 69(1), 151-164.
Holechek, J. L., Geli, H. M., Cibils, A. F., & Sawalhah, M. N. (2020). Climate change, rangelands, and sustainability of ranching in the Western United States. Sustainability, 12(12), 4942.
Jafarian, Z. (2024). Investigating the Potential Habitat of Bromus stenostachyus Boiss. in Mazandaran Rangelands Using an Ensemble Modeling Approach. Journal of Rangeland, 17(4), 513-52 (InPersian).
Kalai, S., Anzala, L., Bensoussan, M., & Dantigny, P. (2017). Modelling the effect of temperature, pH, water activity, and organic acids on the germination time of Penicillium camemberti and Penicillium roqueforti conidia. International Journal of Food Microbiology, 240, 124-130.
Kamkar, B., Ahmadi, M., Soltani, A., & Zeinali, E. (2008). Evaluating non-linear regression models to describe response of wheat emergence rate to temperature. Seed Science and Biotechnology, 2(2), 53-57.
Kamkar, B., Al-Alahmadi, M. J., Mahdavi-Damghani, A., & Villalobos, F. J. (2012). Quantification of the cardinal temperatures and thermal time requirement of opium poppy (Papaver somniferum L.) seeds to germinate using non-linear regression models. Industrial Crops and Products, 35(1), 192-198.
Lewandrowski, W., Stevens, J. C., Webber, B. L., L Dalziell, E., Trudgen, M. S., Bateman, A. M., & Erickson, T. E. (2021). Global change impacts on arid zone ecosystems: Seedling establishment processes are threatened by temperature and water stress. Ecology and Evolution, 11(12), 8071-8084.
Lutman, P., Cussans, G., Wright, K., Wilson, B., Wright, G. M., & Lawson, H. (2002). The persistence of seeds of 16 weed species over six years in two arable fields. Weed Research, 42(3), 231-241.
Milton, S. J. (1995). Spatial and temporal patterns in the emergence and survival of seedlings in arid Karoo shrubland. Journal of Applied Ecology, 145-156.
Mnif Fakhfakh, L., Abassi, S., & Chaieb, M. (2025). Effect of temperature, salinity and water potential on seed germination of annual grass Stipa capensis. Arid Land Research and Management, 39(1), 87-103.
Mohammadi-Rad, Z., Sheidai-Karkaj, E., Mofidi-Chelan, M., & Younessi-Hamzekhanlu, M. (2023). The relationship between the morphological traits of the medicinal plant Stachys inflata Benth and environmental factors. Journal of Rangeland, 17(1), 145-164 )InPersian).
Molaei, M., Ghorbani, A., Moameri, M., Motamedi, J., & Hazbavi, Z. (2024). Modeling of Artemisia austriaca habitat in rangelands of Ardabil province [Research]. Journal of Rangeland, 18(1), 42-56 (InPersian).
Mut, H., & Ayan, I. (2011). Effects of different improvement methods on some soil properties in a secondary succession rangeland. Journal of Biological and Environmental Sciences, 5(13), 11-16.
Nascimento, W. M., Cantliffe, D. J., & Huber, D. J. (2004). Ethylene evolution and endo-beta-mannanase activity during lettuce seed germination at high temperature. Scientia Agricola, 61, 156-163.
Dehdari, S., Noedoost, F., Kazemiُ, S. R., Farahinia, M., & Shojaei, F. (2021). Flora, Life Form and Chorology of plants in the Dareh Anar watershed basin in Bagmalek-Khuzestan. Journal of Plant Research (Iranian Journal of Biology), 34(2), 411-427 (InPersian).
Ortega-Baes, P., Galíndez, G., Sühring, S., Rojas-Aréchiga, M., Daws, M., & Pritchard, H. (2011). Seed germination of Echinopsis schickendantzii (Cactaceae): the effects of constant and alternating temperatures. Seed Science and Technology, 39(1), 219-224.
Razmjoue, D., & Zarei, Z. (2017). Ethnobotanical study identification, medical properties and how to use of some medicinal plants of Behbahan city of Khuzestan province, Iran. Journal of Medicinal Plants, 16(64), 33-49 (InPersian).
Samadi, S., Ghorbani, A., Moameri, M., Abbaارعsi, M., & Bidar, M. (2020). The impact of invasive species Leucanthemum vulgare Lam. on vegetation characteristics of Fandoghlou rangelands in Namin county, Ardabil, Iran. Journal of Rangeland, 14(3), 379-392 (InPersian).
Shafii, B., & Price, W. J. (2001). Estimation of cardinal temperatures in germination data analysis. Journal of agricultural, biological, and environmental statistics, 6, 356-366.
Shankar, S., Segaran, G., Sundar, R. D. V., Settu, S., & Sathiavelu, M. (2019). Brassicaceae-A classical review on its pharmacological activities. International Journal of Pharmaceutical Sciences Review and Research, 55(1), 107-113.
Song, Q., Cheng, S., Chen, Z., Nie, G., Xu, F., Zhang, J., Zhou, M., Zhang, W., Liao, Y., & Ye, J. (2019). Comparative transcriptome analysis revealing the potential mechanism of seed germination stimulated by exogenous gibberellin in Fraxinus hupehensis. BMC plant biology, 19, 1-17.
Sürmen, M., Yavuz, T., Sürmen, B., & Kutbay, H. G. (2015). Determination of the population densities of invasive species in meadows and pastures of Samsun. Turkish Journal of Weed Science, 18(3), 9-10.
Taghvaei, M., & Ghaedi, M. (2010). The impact of cardinal temperature variation on the germination of Haloxylon aphyllum L. seeds. Journal of Ecology and Environment, 33(3), 187-193.
Taghvaei, M., Sadeghi, H., & Khaef, N. (2015). Cardinal Temperatures for Germination of the Medicinal Anddesert Plant, Calotropis procera. Planta Daninha, 33, 671-678.
Toscano, S., Romano, D., Cafaro, V., & Patanè, C. (2025). Annual Garden Rocket and Radish as Microgreens: Seed Germination Response to Thermal and Salt Stress. Agronomy, 15(2), 361.
Tracy, B. F., & Sanderson, M. A. (2004). Forage productivity, species evenness and weed invasion in pasture communities. Agriculture, ecosystems & environment, 102(2), 175-183.
Wang, X., Chai, J., Liu, W., Zhu, X., Liu, H., & Wei, X. (2023). Promotion of Ca2+ Accumulation in Roots by Exogenous Brassinosteroids as a Key Mechanism for Their Enhancement of Plant Salt Tolerance: A Meta-Analysis and Systematic Review. International Journal of Molecular Sciences, 24(22), 16123.
Zare, A., Elahifard, E., Adnani, Z. T., & Roustaei, A. (2020). Quantifying field weeds emergence pattern of weeds in rapeseed (Brassica napus L.) under weather conditions of Khuzestan, Iran. Iranian Journal of Crop Sciences, 20(2), 198-211 (InPersian).
Zare, A., Malekpoor, M., & Arabizadeh, M. (2021). Determining Cardinal Temperature for Seed Germination of Four‏‏ Weeds Brassicaceae‎ Family. Journal of Crops Improvement, 23(2), 417-428 (InPersian).
Zare, M., Ghorbani, A., Moameri, M., Sahragard, H. P., Mostafazadeh, R., Hosseini, Z., & Dadjou, F. (2023). Effect of Environmental Factors on Habitat Prediction of Species Dorema ammoniacum D. DON. in Nadoushan Rangelands, Yazd Province. Journal of Rangeland, 17(1), 66-81 (InPersian).
Zhang, B., Valentine, I., & Kemp, P. D. (2007). Spatially explicit modelling of the impact of climate changes on pasture production in the North Island, New Zealand. Climatic Change, 84(2), 203-216.