ارزیابی پتانسیل گونه‌هایAgropyron intermedium (Host) P. Beauv. و Dactylis glomerata L. در گیاه‌پالایی خاک آلوده به نفت خام سبک در شرایط گلخانه‌ای

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانش آموختۀ کارشناسی ارشد مرتع داری، دانشکدۀ منابع طبیعی، دانشگاه ارومیه، ایران.

2 استادیار پژوهشی، بخش تحقیقات مرتع، موسسه تحقیقات جنگلها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

3 استادیار پژوهشی، بخش تحقیقات مرتع، مؤسسۀ تحقیقات جنگلها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران.

4 دانشیار پژوهشی، بخش تحقیقات مرتع، موسسه تحقیقات جنگلها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

چکیده

هیدروکربن­های نفتی از جمله آلاینده­های پایدار سمی بوده که تهدیدی اساسی برای اکوسیستم به­شمار می­رود. گیاه­پالایی، شامل استفاده از گیاهان برای پاکسازی خاک­های آلوده، یک روش مؤثر و اقتصادی در کاهش آلودگی­های نفتی خاک است. در این پژوهش پتانسیل گیاه­پالایی گیاهان مرتعی Agropyron intermedium و Dactylis glomerata  بر خاک آلوده با غلظت­های مختلف نفت خام (20، 30، 40 و 50 درصد) برای مدت 120 روز در شرایط گلخانه­ای مورد بررسی قرار گرفت. در انتهای تحقیق، تغییرات فاکتورهای زیستی (ارتفاع اندام­هوایی، وزن خشک
اندام­هوایی و وزن خشک ریشه) هر کدام از گونه­ها و تغییرات هیدروکربن­های نفتی خاک اندازه­گیری گردید و نتایج با استفاده از نرم­افزار SPSS تجزیه و تحلیل شد. روند منحنی سینتیک زوال درصد ترکیبات نفتی برای محاسبۀ مدت زمان لازم برای تجزیۀ هیدروکربن­های نفتی، ارزیابی گردید. نتایج نشان داد سه شاخصۀ مهم فاکتورهای زیستی هر دو گونه در تیمارهای مختلف، تفاوت معنی­داری با تیمار شاهد داشتند. آنالیز حاصل از تغییرات درصد ترکیبات نفتی نشان داد، گیاه Ag.intermedium با کاهش 81/79 درصد مواد نفتی در تیمار 20 درصد و 54/58 درصد کاهش در تیمار 50 درصد، توانایی بهتری نسبت به گیاه D.glomerataدر گیاه­پالایی خاک­های آلوده به مواد نفتی را دارد. نتایج حاصل از آنالیز درصد ترکیبات نفتی نمونه­های خاک و برازش آن با سه مدل سینتیک درجۀ صفر، سینتیک درجۀ اول و مدل هیگوچی، در هر دو گونه نشان داد که مدل سینتیک درجۀ اول مناسب­ترین مدل برای شبیه­سازی روند تغییرات مقادیر هیدروکربن­های نفتی خاک می­باشد.

کلیدواژه‌ها


[1]        Abedi Koupai, J., Ghaheri, E., Eslamian, S.S. and Hosseini, H. (2013). Investigation the Kinetic Models of Biological Removal of Petroleum Contaminated Soil Around Oil Pipeline Using Ryegrass. Journal of Water & Wastewater, 1, 62-68 (In Persian).
[2]        Afzal, M., Khan, S., Iqbal, S. and Khan, Q.M. (2013). Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere, 90, 1317-1332.
[3]        Agnello, A.C. (2014). Potential of alfalfa for use in chemically and biologically assisted phytoremediation of soil co-contaminated with petroleum hydrocarbons and metals. PhD thesis, University of Cassino studies and the Southern Lazio, 248p
[4]        Anigboro, A. and Tonukari, N. (2008). Effect of crude oil on invertase and amylase activities in Cassava leaf extract and germinating Cowpea seedlings. Asian Journal of Biological Sciences, 1, 56-60.
[5]        Askary Mehrabadi, M., Amini, F. and Sabeti, P. (2014). Evaluation of phytoremediation of petroleum hydrocarbon and heavy metals with using Catharanthus roseus. Iranian Journal of Plant Biology, 6(21), 111-126 (In Persian).
[6]        Baah, B. (2011). Phytoremediation of hydrocarbon contaminated soil- a case study at newmont ghana gold limited - ahafo kenyasi, M.Sc. Thesis, Department of Environmental Science, Kwame Nkrumah University of Science and Technology, 111p.
[7]        Besalatpour, A.A., Hajabbasi, M.A., Dorostkar, V. and Torabi, GH. (2010). Reclamation of Petroleum-Contaminated Soils Using Combined Landfarming-Phytoremediation Method. Journal of Water and Soil Science, 14(53), 129-143 (In Persian).
[8]        Daryabeigi Zand, A., Nabi Bidhendi, Gh., Mehrdadi, N. and Shirdam, R. (2011). The Influence of Petroleum Hydrocarbon Pollution on plant growth and efficiency of plants in hydrocarbon removal from soil. Journal of Environmental Science and Technology, 12(4), 41-57 (In Persian).
[9]        Dhir, B. (2013). Phytoremediation: Role of Aquatic Plants in Environmental Clean-Up, Springer New Delhi Heidelberg New York Dordrecht London, Pp, 10-15.
[10]    Doni, S., Macci, C., Peruzzi, E., Arenella, M., Ceccanti, B. and Masciandaro, G. (2012). In situ phytoremediation of a soil historically contaminated by metal, hydrocarbons and polychlorobiphenyls. Journal of Environment Monitoring, 14, 1383-1390.
[11]    Etemadi, N., Saraeian, Z., Haghighi, M., HajAbbassi, M. A. and Afyuni, M. (2015). The effects of petroleum contaminated soil on germination and morphophysiological characteristics of wheatgrass (Agropyron desertorum) for landscape design. Journal of Plant Process and Function, 4(11), 87-98 (In Persian).
[12]    Etim, E. E. (2012). Phytoremediation and Its Mechanisms: A Review. International Journal of Environment and Bioenergy, 2(3), 120-136.
[13]    Eze, C. N., Ugwu, C. C., Eze, E. A. and Eze, U. S. (2014). Evaluation of germination, shoot growth and rhizofungal flora of Zea mays and Sorghum bicolor in soil contaminated with varying levels of Bonny light crude oil. International Journal of Current Microbiology and Applied Sciences, 3(1), 253-263.
[14]    Gao, Y., Ling, W. and Wong, M. H. (2006). Plant-accelerated dissipation of phenanthrene and pyrene from water in the presence of a nonionic-surfactant. Chemosphere, 63, 1560-1567.
[15]    Hegazy, A.K., Moubasher, H.A., Mohamed, N.H., Moustafa, Y.M., Kabiel, H.F. and Hamad, A.A. (2015). Phytoremediation of soils polluted with crude petroleum oil using Bassia scoparia and its associated rhizosphere microorganisms. International Biodeterioration & Biodegradation, 98, 113-120.
[16]    http://plants.usda.gov/core/profile?symbol=THIN6 (20/6/2016).
[17]    http://plants.usda.gov/core/profile?symbol=DAGL (20/6/2016).
[18]    Hutchinson S.L., Schwab A.P. and Banks M.K. (2001). Phytoremediation of Aged Petroleum Sludge: Effect of Irrigation Techniques and Scheduling. Journal of Environmental Quality, 30, 1516-1522.
[19]    Iraji Asiabadi, F., Mirbagheri, S.A. and Soleymani, M. (2016). Evaluation the Phytoremediation of Oil-contaminated Soils Around Isfahan Oil Refinery. Journal of Water & Wastewater, 3, 38-47 (In Persian).
[20]    Kardani M. and Takdastan, A. (2015). Removal of Total Petroleum Hydrocarbons Using Vetiveria Zizanioides and Microbial Population Changes in Soil Contaminated with Oil in Ahvaz. Journal of Mazandaran University of Medical Sciences, 25(131), 87-97 (In Persian).
[21]    Khoramnejadian, Sh., Matinfar, F. and Khoramnejadian. Sh. (2013). Phytoremediation of petroleum hydrocarbons by native plants of Damavand region. Global Journal of Medicinal Plant Research, 1(1), 8-11.
[22]    Krutz, L. J., Beyrouty, C. A., Gentry, T. J., Wolf, D. C. and Reynolds, C. M. (2005). Selective enrichment of a pyrene degrader population and enhanced pyrene degradation in Bermuda grass rhizosphere. Biol Fertil Soils, 41, 359-364.
[23]    Lu, G., Liao, Ch., Xu, W., Deng, F., Liang, X., Guo, Ch. and Dang, Zh. (2016). Biosurfactant-enhanced phytoremediation of soils contaminated by crude oil using maize (Zea mays. L). Ecological Engineering, 92, 10-17.
[24]    Masu, S., Popa, M., Morariu, F., Lixandru, B. and Popescu, D. (2014). Prospects of using leguminous species in phytoremediation of total petroleum hydrocarbons polluted soils. Scientific Papers: Animal Science and Biotechnologies, 47(1), 172-176.
[25]    Mogimi, J. (2005). Introduction some of important rangeland species for improvement of Iranian rangelands, 1st Edition, Arvan press, 669p (In Persian).
[26]    Moreira, I.T.A, Oliveira, O.M.C., Triguis, J.A., Dos Santos, A.M.P., Queiroz, A.F.S., Martins, C.M.S., Silva, A.C.S. and Jesus, R.S. (2011). Phytoremediation using Rizophoramangle L. in mangrove sediments contaminated by persistent total petroleum hydrocarbons (TPH’s). Microchemical Journal, 99, 376-382.
[27]    Moreira, I.T.A, Oliveira, O.M.C., Triguis, J.A., Queiroz, A.F.S., Ferreira, S.L.C., Martins, C.M.S., Silva, A.C.S. and Falcao, B.A. (2013). Phytoremediation in mangrove sediments impacted by persistent total petroleum hydrocarbons (TPH’s) using Avicennia schaueriana. Marine Pollution Bulletin, 67, 130–136.
[28]    Norouzihajiabdal, f., Farzamisepehr, M. and Farajzadeh, M.A. (2013). Phytoremediation Potential of Polypogon monspeliensis L. in remediation of petroleum polluted soils. Journal of Plant Environmental Physiology, 8(1), 75-87 (In Persian).
[29]    Olsen, S.R. and Sommers, L.E. (1982). Phosphorus. In: Methods of soil analysis, Part 2. American Society of Agronomy, Madison, Wisconsin (eds.). Pp, 403-431.
[30]    Omosun, G., Markson, A.A. and Mbanasor, O. (2008). Growth and anatomy of Amaranthus Hybridus as affected by differrent crude oil concentrations. American-Eurasian Journal of Scientific Research, 3(1), 70-74.
[31]    Parseh, I., Alavi Bakhtiarvand, SN., Ahmadimoghadam, M. and Jafarzadeh, N. (2013). Greenhouse Assessment of Phytoremediation Efficiency for Petroleum Contaminants in Clay and Saline Soil. Journal of Health Services Research & Policy, 8(7), 1272-1279 (In Persian).
[32]    Parseh, I., Alavi Bakhtiarvand, S.N., Ahmadimoghadam, M., Jafarzadeh, N., Chehrazi, M. and Chorom, M. (2014). Assessment of Phytoremediation Efficiency on reducing oil hydrocarbons from clay-silt soil using Aeluropus littaralis. Iranian Journal of Healthand Environment, 7(1), 73-84 (In Persian). 
[33]    Parvanak, K., Hosseini Boldaji, S.A. (2015). Evaluating Some Plant Species for the Refinement of Petroleum Sludge and their Growth Response to Petroleum Pollution, Quartery Plant and Ecosystem, 11(44), 43-54 (In Persian). 
[34]    Rahnama, A. and Alaie, E. (2015). Phytoremediation, Principles and Applications, 1st Edition, Research Institute of Petroleum Industry Press, 644 p (In Persian).
[35]    Schnoor, J. L. (1997). Phytoremediation. The University of Iowa, Department of Civil and Environmental Engineering and Center for Global and Regional Environmental Research, 37p.
[36]    Schuler, L. and Behling, H. (2011). Poaceae pollen grain size as a tool to distinguish past grasslands in South America: a new methodological approach. Vegetation History and Archaeobotany, 20, 83–96.
[37]    Seyed Alikhani, S., Shorafa, M., Tavassoli, A. and Ebrahimi, S.S. (2011). The Effect of Plants' Growth at Different Densities on Soil Petroleum Hydrocarbons Remediation. Journal of Water and Soil, 25(5), 961-970 (In Persian).
[38]    Shahsavari, E., M.Adetutu, E., Taha, M. and S.Ball, A. (2015). Rhizoremediation of phenanthrene and pyrene contaminated soil using wheat. Journal of Environmental Management, 155, 171-176.
[39]    Shirdam, R., Daryabeigi Zand, A., Nabi bidhendi, G.R. and Mehrdadi, N. (2009). Removal of Total Petroleum Hydrocarbons (TPHs) from Oil-Polluted Soil in Iran. Iranian Journal of Chemistry and Chemical Engineering, 28(4), 105-113.
[40]    Taheri ghannad, S. and Afrous, A. (2016).  Kinetic equations for the biological removal of lead from industrial wastewater using indigenous species of aquatic plants in Khuzestan. Journal of Environmental Studies, 41(4), 867-878 (In Persian).
[41]    Tang, j., Lu, X., Sun, Q. and Zhu, W. (2012). Aging effect of petroleum hydrocarbons in soil under different attenuation conditions. Agriculture, Ecosystems and Environment, 149, 109– 117.
[42]    Van Epps, A. (2006).  Phytoremediation of Petroleum Hydrocarbons, U.S. Environmental Protection Agency, Washington, DC, 171p.
[43]    Walkley, A. and Black, I.A. (1934). An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 29-38.