تأثیر طول داده، دورۀ آماری و تعداد ایستگاه‌ها بر تغییرپذیری مقدار عامل فرسایندگی باران در مقیاس‌های زمانی مختلف در ایران

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استاد گروه مهندسی آبخیزداری، دانشکدۀ منابع طبیعی، دانشگاه تربیت مدرس، ایران.

2 دانشجوی دکتری علوم و مهندسی آبخیزداری، دانشکدۀ منابع طبیعی، دانشگاه تربیت مدرس، ایران.

3 دانشیار گروه مهندسی آبخیزداری، دانشکدۀ منابع طبیعی، دانشگاه تربیت مدرس، ایران.

چکیده

با توجه به نقش انکارناپذیر عامل فرسایندگی باران در شروع فرسایش آبی، مطالعه ویژگی‌های مختلف آن نقش مهمی در مدیریت بهینه منابع خاک و آب دارد. از طرفی عامل فرسایندگی باران در بسیاری از مدل‌های برآورد فرسایش و به‌منظور اهداف حفاظت خاک و آب استفاده می‌شود. حال آن‌که مطالعۀ کاملی در خصوص بررسی اثر طول و دورۀ آماری و هم‌چنین تعداد ایستگاه‌های مورد استفاده بر تغییرپذیری مقدار عامل فرسایندگی باران انجام نشده است. بنابراین پژوهش حاضر با هدف بررسی تغییرات زمانی عامل فرسایندگی باران در مقیاس‌های زمانی مختلف و نیز نقش طول، دورۀ آماری و تعداد ایستگاه‌ها بر مقدار عامل فرسایندگی  ویشمایر و اسمیت در هفتاد ایستگاه مطالعاتی با دورۀ مشترک آماری بیست سال در مقایسه با تحلیل‌های انجام شده در سطح کشور با هجده ایستگاه و دورۀ مشترک آماری بیست و سه سال و در دو دورۀ مطالعاتی متفاوت در ایران انجام شده است. بدین منظور مقدار عامل فرسایندگی بیش از دوازده هزار رگبار در پژوهش حاضر محاسبه و تغییرات زمانی آن در مقیاس‎های مختلف زمانی با استفاده از آزمون t مورد ارزیابی و تحلیل قرار گرفت. بر اساس نتایج به‌دست آمده، مقادیر حداکثر و حداقل فرسایندگی ماه‌ها و فصل‏ها در مطالعۀ حاضر و پیشین مشابهت نداشته است. هم‌چنین نتایج حاصل از آزمون t دلالت بر اختلاف معنی‌دار بین مقادیر عامل فرسایندگی باران در برخی ماه‌ها (05/0>p) و فصل‏ها (05/0>p) در پژوهش‌های مورد نظر داشته است. حال آن‌که اختلاف بین مقادیر فرسایندگی سالانه در پژوهش مورد نظر معنی‌دار (05/0<p) نبوده است.

کلیدواژه‌ها


[1]. Babaei, A., Najafinejad, A. Mostafazadeh, R. and Karami, M. (2010).  Data length effect of instantaneous max discharge records on fitting of the best frequency distribution (Case study: some of gauge stations, Golestan Province). 5th National Conference on Watershed Management Sciences and Engineering of Iran, Gorgan, Iran, pp. 1374-1377.
[2]. Banasik, K., and Gorski, D. (1993). Evaluation of rainfall erosivity for east Poland. Proceeding of the Warsaw Symposium, Runoff and Sediment Yield Modeling, Warsaw, Poland, pp, 129-134.
[3]. Behzadfar, M. (2004). Study on spatio-temporal variation of rainfall erosivity index in Mazandaran province, MSc seminar, Tarbiat Modares University.
[4]. Bennett, H.H. (2001). Soil Conservation, Agrobis.

[5]. Bihamta, M.R., and Zare Chahouki, M.A. (2011). Principals of statistics for the natural resources science, University of Tehran Press.

[6]. Bobee, B., Caradias, G. Ashkar, F. Bernier, J. and Rasmussen, P. (1993). Towards a systematic approach to comparing distributions used in flood frequency analysis. Journal of Hydraulics, 142, 121-136.
[7]. Dastorani, MT. (1996). Study on the effect of hydrological data length in flood forecasting in watersheds, MSc thesis, Tarbiat Modares University.
[8]. Dixon, H., Lawler, D.M. Shamseldin, A.Y. and Webster, P. (2006). The effect of record length on the analysis of river flow trends in Wales and Central England. Proceedings of the Fifth FRIEND World Conference, Climate Variability and Change-Hydrological Impacts, Havana, Cuba, pp, 490-495.
[9]. Griffis, V.W., and Stedinger, J.R. (2007). Evolution of flood frequency analysis with bulletin 17. Journal of Hydrologic Engineering, 12,283-297.
[10]. Hemmadi, K., Akhoond-Ali, A. Behnia, A. and Arab, D. (2007). The role of updating statistical series in assessment of design flood, a case study of Jareh Storage Dam. Iranian Journal of Watershed Management Science, 1(2), 11-20.
[11]. Hemmati, M., Ahmadi, H. Nikkami, D. Zehtabian, Gh. and Jafari M. (2008). The best indicator of rainfall erosivity in Iran cold semi-arid climate (case study: Kabude Olya soil conservation research station, Kermanshah). 4th National Conference on Watershed Management Sciences and Engineering of Iran, Noor, Iran, pp 1-13.
[12]. Hisdal, H., Stahl, K. Tallaksen, L.M. and Demuth, S. (2001). Have streamflow droughts in Europe become more severe or frequent? International Journal of Climatology, 21, 317–333.
[13]. Laflen, J.M., and Moldenhauer, W.C. (2003). The USLE story, World Association of Soil & Water Conservation (WASWC), China.
[14]. Mahdavi, M. (2009). Applied Hydrology, 2ed Edition, University of Tehran Press.
[15]. Mahdavi, M., Osati, Kh. Sadeghi, S.A.N. Karimi, B. and  Mobaraki, J. (2010). Determining suitable probability distribution models for annual precipitation data (a case study of Mazandaran and Golestan Provinces). Journal of Sustainable Development, 3(1),159-168.
[16]. Masoudian, S.A. (2011). Iran Weather, Mashhad Sharie Toos Press.
[17]. Moradi, H.R., Behzadfar, M. and Sadeghi, S.H.R. (2006). Investigation of the relationship between rainfall parameters and rainfall erosivity factor in Khuzestan province. Scientific Journal of Agriculture, 29(4), 69-83.
[18]. Nami, M.H., and Heidaripour, E. (2012). New method for exact calculate of the area and borders length in Islamic Republic of Iran.  Quarterly of Geography (Regional Planning), 2, 229-248.
[19]. Nikkami, D., and Mahdian, M.H. (2015). Rainfall erosivity mapping in Iran. Journal of Watershed Engineering and Management, 4, 364-376.
[20]. Onoz, B., and Baryazit, M. (1995). Best-fit distributions of largest available flood samples. Journal of Hydrology, 167, 195-208.
[21]. Robinson, J.S., and Sivapalan, M. (1997). Temporal scales and hydrological regimes: implication for flood frequency scaling. Water Resources Research, 33(12), 2981-2999.
[22]. Sadeghi, S.H.R and N. Ghazanfarpour. 2007. Comparative evaluation of temporal and spatial frequency distribution for rainfall erosivity in few Iranian climatological stations. Agricultural Technology and Sciences Journal, 21(2): 55-66.
[23]. Sadeghi, S.H.R., and Hazbavi, Z. (2015). Trend analysis of the rainfall erosivity index at different time scales in Iran. Natural Hazards, 77, 383–404.
[24]. Sadeghi, S.H.R., and Tavangar, Sh. (2015). Development of stational models for estimation of rainfall erosivity factor in different timescales. Natural Hazards, 77:429–443.
[25]. Sadeghi, S.H.R., and Yasrebi, B. (2008). Soil and Water Conservation in Forest Watersheds, Rahe Sobhan Press.
[26]. Sadeghi, S.H.R., Moatamednia, M. and Behzadfar, M. (2011). Spatial and temporal variation in the rainfall erosivity factor in Iran. Journal of Agricultural Science and Technology, 13: 451-464.
[27]. Shahoei, S., and Refahi, H. (1995). The use of intensity-duration and return period tables for rainfall erosivity index calculation and compare with other existing methods. 1st National Conference on Erosion and Sediment. Noor, Iran, pp, 265-275.
[28]. Vaezi, A., and Aram, H. (2011). Temporal variations importance of rainfall erosivity for the planning of soil conservation measures (case study: Maharlu watershed). 1st National Conference on Modern Agricultural Sciences & Technologies (MAST). Zanjan, Iran, pp. 1-4.
[29]. Wischmeier, W.H., and Smith, D.D. (1978). Predicting rainfall erosion losses: A guide to conservation planning. U.S. Department of Agriculture. Agriculture Handbook, United States.
[30]. Yin, S., Xie, Y. Liu, B. and Nearing, M.A. (2015). Rainfall erosivity estimation based on rainfall data collected over a range of temporal resolutions. Hydrology and Earth System Sciences, 12, 4965–4996.
[31]. Zachar, D. (1982). Soil erosion development in soil science. Elsevier Scientific, Netherlands.