نشریه علمی - پژوهشی مرتع و آبخیزداری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه احیاء مناطق خشک و کوهستانی، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران

2 دانشکده محیط زیست، دانشگاه تهران، تهران، ایران

10.22059/jrwm.2025.386249.1791

چکیده

این مطالعه با هدف مدل‌سازی طوفان‌های گرد و غبار با استفاده از مدل‌های هیبریدی جنکینز- کاتالیزور SARIMA- ACOR و SARIMA- PSO در استان خوزستان انجام شده است. بدین منظور از داده‌های ساعتی گرد و غبار و کد‌های سازمان جهانی هواشناسی در هفت ایستگاه سینوپتیک استان خوزستان در طول دوره آماری 40 ساله استفاده شده است. به‌منظور ارزیابی دقیق‌تر و کاش خطاهای ممکن، در این پژوهش از ترکیب کاتالیزور (الگوریتم‌های بهینه‌سازی) کلونی مورچگان (ACOR) و ازدحام ذرات (PSO) با مدل باکس- جنکینز SARIMA استفاده شده است. در واقع از کاتالیزور‌ها به‌منظور آموزش‌مدل‌ها، انتخاب بهترین مقادیر برای پارامترها، تشخیص الگو و خوشه‌بندی، یادگیری تقویتی، پردازش تصویر، طراحی سیستم‌های هوشمند و بهینه‌سازی مدل‌های مولد استفاده می‌شود. به‌منظور انتخاب و تعیین بهترین مدل، معیار‌های نیکویی برازش شامل R، RMSE، MAE و NS مورد استفاده قرار گرفته‌اند. نتایج پژوهش حاکی از عملکرد بهتر مدل هیبریدی جنکینز- کاتالیزور SARIMA- ACOR با اختلاف، نسبت به مدل هیبریدی SARIMA- PSO و همچنین مدل انفرادی SARIMA بود. در این بین نیز، ترکیب‌های فصلی یک و دو بیشترین عملکرد و دقت را نسبت به سایر ترکیب‌های فصلی داشتند. مدل بهتر مدل هیبریدی جنکینز- کاتالیزور SARIMA- ACOR با با ریشه میانگین مربعات خطا (RMSE="0/219-0/198" )، ضریب همبستگی (R="0/891-0/859" )، میانگین قدرمطلق خطا (MAE="0/142-0/123" ) و ضریب نش- ساتکلیف (NS="0/881-0/862" ) بهترین عملکرد را نسبت به سایر مدل‌های استفاده‌شده برای پیش‌بینی شاخص FDSD نمایش داده است.

کلیدواژه‌ها

عنوان مقاله [English]

Assessment of Hybrid Jenkins-Catalyst SARIMA-ACOR and SARIMA-PSO Models for Dust Storm modeling (Case Study: Khuzestan Province)

نویسندگان [English]

  • Mohammad Ansari Ghojghar 1
  • Sosan Salajegheh 2
  • Paria Pourmohammad 1

1 Department of Reclamation of Arid and Mountainous Regions, Faculty of Natural Resources, University of Tehran, Karaj, Iran

2 Faculty of Environment, University of Tehran, Tehran, Iran

چکیده [English]

This study aims to model dust storms in Khuzestan province using hybrid Jenkins-Catalyst SARIMA-ACOR and SARIMA-PSO models. For this purpose, hourly dust data and codes from the World Meteorological Organization (WMO) were used from seven synoptic stations across Khuzestan over a 40-year period. To enhance accuracy and minimize potential errors, this research employs the integration of optimization algorithms, namely Ant Colony Optimization (ACOR) and Particle Swarm Optimization (PSO), with the Box-Jenkins SARIMA model. The optimization algorithms are used for model training, parameter selection, pattern recognition, clustering, reinforcement learning, image processing, intelligent system design, and optimizing generative models. To determine the best-fitting model, the goodness-of-fit criteria, including R, RMSE, MAE, and NS, were applied. The results indicate that the hybrid SARIMA-ACOR model outperforms both the SARIMA-PSO hybrid model and the standalone SARIMA model. Among the seasonal combinations tested, combinations one and two demonstrated the highest performance and accuracy. The SARIMA-ACOR hybrid model showed superior performance in predicting the FDSD index, with Root Mean Square Error (RMSE = 0.219–0.198), Correlation Coefficient (R = 0.891–0.859), Mean Absolute Error (MAE = 0.142–0.123), and Nash-Sutcliffe Efficiency (NS = 0.881–0.862) compared to the other models.

کلیدواژه‌ها [English]

  • Horizontal visibility
  • Forecasting
  • Catalyst
  • Seasonal Combination
  • Box-Jenkins
Abbasi, H., Jalili, A., Kosroshahi, M., Fayaz, M., Khaksarian, F., Kenshlo, H., ... & Opp, C. (2024). Land management to control sand and dust storm sources–case study: The dust hotspot of south-eastern Ahvaz, Iran. In E3S Web of Conferences (Vol. 575, p. 07003). EDP Sciences.
Adebiyi, A., Kok, J. F., Murray, B. J., Ryder, C. L., Stuut, J. B. W., Kahn, R. A., ... & Meng, J. (2023). A review of coarse mineral dust in the Earth system, Aeolian Res., 60, 100849.
Aghelpour, P., Singh, V. P., & Varshavian, V. (2021). Time series prediction of seasonal precipitation in Iran, using data-driven models: a comparison under different climatic conditions. Arabian Journal of Geosciences14, 1-14.  (In Persian)
Ahmadpour, A., Mirhashemi, & Panahi. (2021). Evaluation of neural network algorithms, time series models, and the SARIMA-SETAR hybrid model in monthly wind speed prediction. Arid Biome, 10(2), 131–146. (In Persian)
Ansari Ghojghar, M. A., Pourgholam-Amiji, M., Bazrafshan, J., Araghinejad, S., Liaghat, A., & Hosseini-Moghari, S. M. (2021). Performance Evaluation of Genetic Algorithm and GA-SA Hybrid Method in Forecasting Dust Storms (Case Study: Khuzestan Province). Soil and Water Research51(10), 2623-2639. (In Persian)
Ansari Ghojghar, M., Araqi Nejad, Sh., Bazrafshan, J., Zahraei, B., & Parsi, E. (2021). Assessing the efficiency of the GRU-LSTM hybrid model in predicting dust storms (Case study: Khuzestan province). (In Persian)
Ansari Ghojghar, M., Bazrafshan, J., & Araghinejad, S. (2022). Evaluating the Efficiency of Hybrid Metamodels of Machine Learning and Box Jenkins in Order to Model Dust Storms (Case Study: Khuzestan Province). Iranian Journal of Soil and Water Research53(8), 1695-1714. (In Persian)
Ansari Ghojghar, M., Pourgholam-Amiji, M., Araghinejad, S., Zahraie, B., Razavi, S., & Salajegheh, A. (2021). Evaluation of the Combination of ANFIS Model with Metaheuristic Optimization Algorithms in Predicting Dust Storms of Khuzestan Province. Journal of Range and Watershed Managment73(4), 691-708. (In Persian)
Ansari Ghojghar, M., Pourgholam-Amiji, M., Bazrafshan, J., Liaghat, A., & Araghinejad, S. (2020). Performance Comparison of statistical, fuzzy and perceptron neural network models in forecasting dust storms in critical regions in Iran. Iranian Journal of Soil and Water Research51(8), 2051-2063. (In Persian)
Araghinejad, S., Ansari Ghojghar, M., PourGholam Amigi, M., Liaghat, A., & Bazrafshan, J. (2022). The effect of climate fluctuation on frequency of dust storms in Iran. Desert Ecosystem Engineering7(21), 13-32. (In Persian)
Arami, S. H., Karimi Sangchini, E., Alimahmoodi Sarab, S., Dinarvand, M. and Yasrebi, B. (2024). Mapping spatial and temporal pattern of risk and hazard of dust storms in Khuzestan province. Journal of Arid Biome14(1), 61-78.
Awadh, S. M. (2023). Impact of North African sand and dust storms on the Middle East using Iraq as an example: Causes, sources, and mitigation. Atmosphere14(1), 180.
Bahrami, H.-A., Jalali, J., & Darvishi Balourani, B. (2014). Spatiotemporal modeling of dust storm occurrences in Khuzestan province. Iranian Journal of Remote Sensing and GIS, 5(2). (In Persian)
Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons.
de Jesús Guevara-Macías, M., Pineda-Martínez, L. F., & Carbajal, N. (2023). A descriptive study of dust storms and air quality in a semi-arid region of Mexico. Air Quality, Atmosphere & Health16(8), 1645-1660.
Dorigo, M. (2007). Ant colony optimization. Scholarpedia2(3), 1461.
Fallah Ghalehri, F., & Sarvestan, S. (2020). Analysis and forecasting of dust phenomena in Khuzestan province using Box-Jenkins time series models. Watershed Engineering and Management Journal, 12(3), 608–620. (In Persian)
Gillette, D. A. (1981). Production of dust that may be carried great distances.
Golestan, A., & Molai-Zahedi, Z. (2013). A review of swarm intelligence-based optimization algorithms. Conference on Computer. (In Persian)
Gorissen, B. L., Yanıkoğlu, İ., & Den Hertog, D. (2015). A practical guide to robust optimization. Omega53, 124-137.
Goudie, A. S., & Middleton, N. J. (2006). Desert dust in the global system. Springer Science & Business Media.
Guo, Y. T., Zhang, J., Wang, S. G., She, F., & Li, X. (2011). Long-term characterization of major water-soluble inorganic ions in PM 10 in coastal site on the Japan Sea. Journal of atmospheric chemistry68, 299-316.
Hahnenberger, M., & Nicoll, K. (2014). Geomorphic and land cover identification of dust sources in the eastern Great Basin of Utah, USA. Geomorphology204, 657-672.
Helmi Mahtab, M., Bakhtiari Bahram, B., & Qadri Kourosh, K. (2020). Modeling and predicting meteorological drought using the SARIMA time series model in various climatic regions of Iran. (in persian)
Jahanbakhsh-Asl, M., Khorshiddoost, M., Abbasi-Qasrekik, & Abbasi-Qasrekik. (2024). Comparative application of time series models in predicting precipitation in West Azerbaijan province. Applied Research in Geographical Sciences, 24(75), 98–115. (In Persian)
Karahan, H., Gurarslan, G., & Geem, Z. W. (2013). Parameter estimation of the nonlinear Muskingum flood-routing model using a hybrid harmony search algorithm. Journal of Hydrologic Engineering18(3), 352-360.
Kargar, E., Badaq Jamali, J., Ranjbar Sa'adat Abadi, A., Moeinoddini, M., & Gashtasb, H. (2016). Simulation and numerical analysis of severe dust storms in eastern Iran. Spatial Analysis of Environmental Hazards, 3(4), 101–119. (In Persian)
Li, A., & Draine, B. T. (2002). Infrared Emission from Interstellar Dust. III. The Small Magellanic Cloud. The Astrophysical Journal576(2), 762.
Middleton, N., Kashani, S. S., Attarchi, S., Rahnama, M., & Mosalman, S. T. (2021). Synoptic causes and socio-economic consequences of a severe dust storm in the Middle East. Atmosphere12(11), 1435.
Naseri, S. H., & Chitgar, S. (2020). A new method for solving multi-objective stochastic optimization models with chance constraints. Operational Research and Its Applications (Applied Mathematics), 17(3), 63–79. (In Persian)
Nickling, W. G., & Gillies, J. A. (1989). Emission of fine-grained particulates from desert soils. In Paleoclimatology and Paleometeorology: modern and past patterns of global atmospheric transport (pp. 133-165). Dordrecht: Springer Netherlands.
Panicker, N. K. K., & Valarmathi, J. (2024). Time series prediction of aerosol optical depth across the northern Indian region: integrating PSO-optimized SARIMA-SVR based on MODIS data. Acta Geophysica, 1-30.
Pourgholam Amiji, A., Ansari Qojaqar, M., Bazrafshan, J., Liaqaat, A., & Araqi Nejad, Sh. (2020). Comparing the performance of SARIMA and Holt-Winters time series models with artificial intelligence methods in forecasting dust storms (Case study: Sistan and Baluchestan province). Journal of Natural Geography Research, 52(4), 567–587. (In Persian)
Shafieenejad, I., Dehkordi, M. R. B., & Amin, M. (2024). A review of the application of optimization algorithms nature inspired in the design of flight paths. Technology in Aerospace Engineering8(3), 75-99. (In Persian)
Shuker, Z. (2022). Dust Storms and Climate Change: A Crisis for the Iraqi Economy, and the Need for Multilateral Solutions. The Institute of Regional and International Studies: Islamabad, Iraq.
Sobhani, B., Safarian Zengir, V., & Faizollahzadeh, S. (2020). Modeling and prediction of dust in western Iran. Physical Geography Research Quarterly52(1), 17-35. (In Persian)
Socha, K., & Dorigo, M. (2008). Ant colony optimization for continuous domains. European journal of operational research185(3), 1155-1173.
Sun, Y., Zhuang, G., Yuan, H., Zhang, X., & Guo, J. (2004). Characteristics and sources of 2002 super dust storm in Beijing. Chinese Science Bulletin49, 698-705.
UNEP, W. (2021). UNCCD (2016) Global assessment of sand and dust storms. United Nations Environment Programme, Nairobi.
Zeynali, M. J., & Bilandi, M. P. (2018). Estimation of optimal parameters of the nonlinear Muskingum routing model using the continuous ant colony algorithm. Iranian Journal of Irrigation and Drainage Engineering, 8(3), 94–106. (in persian)
Zhu, W., & Duan, H. (2014). Chaotic predator–prey biogeography-based optimization approach for UCAV path planning. Aerospace science and technology32(1), 153-161.