نشریه علمی - پژوهشی مرتع و آبخیزداری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مرکز تحقیقات بین المللی بیابان، دانشگاه تهران. کرج، ایران

2 مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی خراسان رضوی، مشهد، ایران

10.22059/jrwm.2025.384727.1786

چکیده

سنگفرش بیابان و پوسته‌های پلایا به به عنوان لایه مقاوم از خاک و و مواد زمینی زیرین محافظت می‌کنند. در صورتیکه لایه‌های حفاظتی به دلیل فعالیت ‌های انسانی بهم ریخته یا شکسته شوند، ذرات ریز زیرین به راحتی توسط باد فرسایش پیدا می‌کنند. هدف از این تحقیق تعیین پتانسیل فرسایش پذیری خاک لایه زیر سنگفرش در دشت‌سرها، رسوب لایه زیر پوسته پلایا و پوسته پلایا است. بدین منظور از ویژگی‌های بافت خاک، دانه‌بندی ذرات خاک و رسوب و خصوصیات شیمیایی خاک از جمله هدایت الکتریکی، درصد سدیم تبادلی و شاخص پایداری الکتروشیمیایی، به عنوان معیار فرسایش پذیری یا پایداری استفاده گردید. نتایج مطالعات نشان می‌دهد که مد طبقه‌های دانه‏بندی ذرات در دشت‌سرها زیر 250 تا 500 میکرون و در نمونه‌های پلایا بیشتر از 500 میکرون است. همچنین متوسط اندازه ذرات در تمام نمونه‌های دشت‌سر، ماسه متوسط تا ریز، و در نمونه‌های پلایا ماسه متوسط تا درشت است که نشان‌دهنده ریزدانه بودن ذرات در دشت‌سرها است. با این حال حدود 60 درصد کل نمونه‌ها دارای بافت ماسه‌ای رسی لومی هستند. میانگین‌های مقدارهای هدایت الکتریکی ، نسبت جذب سدیم و درصد سدیم تبادلی در پوسته‌ی پلایا به طور قابل توجهی از خاک و رسوب زیرسطحی بیشتر است. میانگین مقدار شاخص پایداری الکتروشیمیایی برای موقعیت پوسته‌ی پلایا، رسوب زیرین پلایا و خاک زیرین دشت‌سر به ترتیب 81/0 ، 67/0 و 10/0 است. تجزیه و تحلیل داده‌های بدست آمده نشان داد که توالی افزایشی فرسایش پذیری بادی به ترتیب عبارتنداز خاک زیرین دشت‌سر، رسوب زیرین پلایا و پوسته‌ی پلایا.

کلیدواژه‌ها

عنوان مقاله [English]

Analysis of the aeolian Erodibility Potential of Soil and Subsurface sediment of Pavement and Playa crust (Case Study: Khartouran Region)

نویسندگان [English]

  • Elahe Khosrogerdi 1
  • Naser Mashahadi 1
  • Abolghasem Dadresi 2

1 International Desert Research Center, University of Tehran, Karaj, Iran

2 Khorasan Razavi Agricultural and Natural Resources Research and Education Center, Mashhad, Iran

چکیده [English]

Desert pavement and playa crusts serve as resistant layers that protect underlying soil and sediment materials. When these protective layers are disrupted by human activities, the exposed fine particles become highly susceptible to wind erosion. This research aimed to evaluate the erodibility potential of three layers: sub-pavement soil in the pediment, sub-crust deposits, and playa crust. We assessed erodibility using soil texture characteristics, grain granulometry, and chemical properties including Electrical Conductivity (EC), Exchangeable Sodium Percentage (ESP), and Electrochemical Stability Index (ESI). Results indicate that the dominant granular category ranges between 250-500 microns in pediment samples, while playa samples exceed 500 microns. Particle size analysis reveals medium-to-fine sand in all pediment samples versus medium-to-coarse sand in playa samples, demonstrating finer particles in the pediment. Approximately 60% of all samples exhibited Sandy Clay Loam texture. Chemical analysis showed significantly higher mean values of EC, SAR, and ESP in playa crust compared to subsurface soil and deposits. The mean ESI values were 0.81 (playa crust), 0.67 (sub-crust deposits), and 0.10 (sub-pavement soil). Data analysis established the following wind erodibility sequence: sub-pavement soil > sub-crust deposits > playa crust.

کلیدواژه‌ها [English]

  • Desert pavement
  • Electrochemical Stability Index (ESI)
  • Grain granulometry
  • Pediment
  • playa crust
  • Soil texture
Adelsberger, K. A., & Smith, J. R. (2009). Desert pavement development and landscape stability on the Eastern Libyan Plateau, Egypt. Geomorphology, 107(3-4), 178-194.
Anderson, J. R. (2004). Sieve analysis lab exercise. University of Georgia.
Baddock, M. C., Ginoux, P., Bullard, J. E., & Gill, T. E. (2016). Do MODIS‐defined dust sources have a geomorphological signature? Geophysical Research Letters, 43(6), 2606-2613.
Belnap, J. (2003). Biological soil crusts and wind erosion. Biological soil crusts: Structure, function, and management, 339-347.
Bertolini, G., Hartley, A. J., Marques, J. C., & Paim, J. C. (2023). Controls on grain‐size distribution in an ancient sand sea. Sedimentology, 70(4), 1281-1301. https://doi.org/10.1111/sed.13077
Blott, S., & Pye., K. (2001). Gradistat: a grain size distribution ans statistics package for the analysis of unconsolidated sediments, Earth Surface Processes and Landforms, 26: 1237-1248.
Ben-Hur, M., Shainberg, I., Bakker, D., & Keren, R. (1985). Effect of soil texture and CaCO 3 content on water infiltration in crusted soil as related to water salinity. Irrigation Science, 6, 281-294.
Chepil, W. S. (1945). Dynamics of wind erosion: I. Nature of movement of soil by wind. Soil Science, 60(4), 305-320.
Folk, R.L., & Ward, W.C. (1957). Brazos river bar: a study of the significance of grain size parameters. Journal of sedimentary petrology, 27; 3-26.
Friedman, G. M. (1961). Distinction between dune, beach, and river sands from their textural characteristics. Journal of Sedimentary Research, 31(4), 514-529. https://doi.org/10.1306/74D70BCD-2B21-11D7-8648000102C1865D
Gutiérrez, M. (2005). Desert surfaces: pavements, patterned ground, varnishes and crusts. Developments in Earth Surface Processes, 8, 259-284.
Hardy, N., Shainberg, I., Gal, M., & Keren, R. (1983). The effect of water quality and storm sequence upon infiltration rate and crust formation. Journal of soil science, 34(4), 665-676.
Harper, K. T., & Belnap, J. (2001). The influence of biological soil crusts on mineral uptake by associated vascular plants. Journal of arid environments, 47(3), 347-357.
Khosrojerdi, A., Mashhadi, N., & Dadresi, A. (2017). Investigating the sand sources of Khartoran Erg based on some physical and chemical characteristics. A thesis for M. Se. University of Tehran. (In Persian).
Knight, J., & Zerboni, A. (2018). Formation of desert pavements and the interpretation of lithic-strewn landscapes of the central Sahara. Journal of Arid Environments, 153, 39-51.
Lal, R. (1991). Soil structure and sustainability. Journal of sustainable agriculture, 1(4), 67-92.
Lal, R., Mokma, D., & Lowery, B. (2018). Relation between soil quality and erosion. In Soil quality and soil erosion (pp. 237-258). CRC press.
Le Roux, J. P. (1994). A spreadsheet template for determining sediment transport vectors from grain-size parameters. Computers & Geosciences, 20(3), 433-440. https://doi.org/10.1016/0098-3004(94)90051-5
Liu, D., Han, L., Kou, Z., Gao, X., & Wang, J. (2023). Exploration of playa surface crusts in Qehan Lake, China through field investigation and wind tunnel experiments. Journal of Arid Land, 15(5), 491-507.
Mashhadi, N., & Feiznia, S. (2008). The study of removal (detachment) and transitional regions of wind erosion upon ground indicator (Case study: Khartouran Erg). Desert, 13(1), 75-87.
Mashhadi, N., Ahmadi, H., Ekhtesasi, M. R., Feiznia, S., & Feghhi, G. (2007). Analysis of sand dunes to determine wind direction and detect sand source sites (case study: Khartooran Erg, Iran).
McKenzie, D. C. (1998). SOILpak for cotton growers, 3rd edn. NSW Agriculture, Orange. New South Wales.
McKenzie, D. C. (2001). Rapid assessment of soil compaction damage I. The SOILpak score, a semi-quantitative measure of soil structural form. Soil Research, 39(1), 117-125.
Nield, J. M., Bryant, R. G., Wiggs, G. F., King, J., Thomas, D. S., Eckardt, F. D., & Washington, R. (2015). The dynamism of salt crust patterns on playas. Geology, 43(1), 31-34.
Nickling, W. G. (1984). The stabilizing role of bonding agents on the entrainment of sediment by wind. Sedimentology, 31(1), 111-117.
O'Brien, P., & Neuman, C. M. (2012). A wind tunnel study of particle kinematics during crust rupture and erosion. Geomorphology, 173, 149-160.
Odeh, I. O., & Onus, A. (2008). Spatial analysis of soil salinity and soil structural stability in a semiarid region of New South Wales, Australia. Environmental management, 42, 265-278.
Pagliai, M., & Stoops, G. (2010). Physical and biological surface crusts and seals. In Interpretation of micromorphological features of soils and regoliths (pp. 419-440). Elsevier.
Pearson, K. E., & Bauder, J. W. (2006). The basics of salinity and sodicity effects on soil physical properties. MSU Extension Water Quality Program.
Pi, H., Webb, N. P., Huggins, D. R., & Sharratt, B. (2021). Influence of physical crust cover on the wind erodibility of soils in the inland Pacific Northwest, USA. Earth Surface Processes and Landforms, 46(8), 1445-1457.
Rayment, G., & Higginson, F. R. (1992). Australian laboratory handbook of soil and water chemical methods., (Inkata Press Pty Ltd: Melbourne).
Reynolds, R.L., Yount, J.C., Reheis, M., Goldstein, H., Chavez, P., Fulton, R., Whitney, J., Fuller, C., Forester, R.M., 2007. Dust emission from wet and dry playas in the Mojave Desert, USA. Earth Surf. Proc. Land. 32, 1811–1827
Rostagno, C. M., & Degorgue, G. (2011). Desert pavements as indicators of soil erosion on aridic soils in north-east Patagonia (Argentina). Geomorphology, 134(3-4), 224-231.
Singer, M. J., & Shainberg, I. (2004). Mineral soil surface crusts and wind and water erosion. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 29(9), 1065-1075.
Warrence, N. J., Bauder, J. W., & Pearson, K. E. (2002). Basics of salinity and sodicity effects on soil physical properties. Departement of Land Resources and Environmental Sciences, Montana State University-Bozeman, MT, 129, 1-29.
Zhang, Z., & Dong, Z. (2015). Grain size characteristics in the Hexi Corridor Desert. Aeolian Research, 18, 55-67. https://doi.org/10.1016/j.aeolia.2015.05.006.