نشریه علمی - پژوهشی مرتع و آبخیزداری

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی مرتع و آبخیزداری، دانشکده منابع طبیعی، دانشگاه لرستان، خرم آباد، ایران

10.22059/jrwm.2025.385428.1789

چکیده

این تحقیق با هدف مدل‌سازی شاخص کیفیت آب ( WQI) به کمک مدل‌های هوش‌مصنوعی با تکیه بر مدل‌های یادگیری ماشین RepTree، RF، M5P، BM5P(ترکیب M5P و Bagging)، BRF(ترکیب RF و Bagging) و BRepTree (ترکیب RepTree و Bagging) در حوضه‌های خرم‌آباد، الشتر و بیرانشهر، استان لرستان انجام گرفته است. در این تحقیق ابتدا بر اساس داده-های کیفیت آب، شاخص کیفیت آب (WQI) محاسبه شد و در ادامه برای مدل‌سازی، داده‌های ورودی شامل پارامترهای کیفی آب یک دوره 10 ساله (1403-1393) و همچنین داده خروجی شاخص کیفیت آب رودخانه‌ها بود. در این تحقیق برای مدل‌سازی در مرحله آموزش 70 درصد داده‌ها و در مرحله ارزیابی 30 درصد باقی‌مانده مورد استفاده قرار گرفتند و در نهایت بر اساس نتایج معیارهای ارزیابی خطای ضریب همبستگی (CC)، ریشه میانگین مربعات خطا (RMSE) و میانگین خطای مطلق (MAE) همچنین نمودارهای تیلور و ویولن باکس مدل بهینه انتخاب شد. نتایج تحقیق نشان داد که از بین مدل‌های استفاده شده، مدل BM5P باتوجه به معیارهای ارزیابی مدل CC، MAE و RMSE در بخش آزمایش به‌ترتیب برابر 99/0، 15/0 و 20/0 از عملکرد بهتری نسبت به سایر مدل‌ها برخوردار بوده است. در ادامه با توجه به نتایج حاصل از نمودارهای تیلور و ویولن باکس به‌منظور ارزیابی کارایی مدل‌ها، برتری این مدل نسبت به سایر مدل‌ها تایید شد. در نهایت نتایج نشان داد که برای صرفه‌جوی در زمان و هزینه و همچنین مدیریت بهینه پارامتر‌های کیفیت آب، یکی از راهکارهای مناسب، استفاده از تکنیک‌های هوش‌ مصنوعی به‌منظور مدل‌سازی و ارزیابی شاخص کیفیت آب (WQI) می‌باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Water quality Index (WQI) modeling using Artificial Intelligence Techniques (AIT) (Case study: Kashkan watershed, Lorestan province)

نویسندگان [English]

  • Alireza Sepahvand
  • Nasrin Beiranvand
  • Negar Arjmand

Department of Range and Watershed Management, Faculty of Natural Resources, Lorestan University, Khorramabad, Iran

چکیده [English]

Water quality (WQ) is influenced by various variables, including natural ones like rainfall and erosion and human ones like urban, agricultural, and industry operations, that plays a very important role in assessment and determining factors such as environmental conditions, public health, economic and social progress and development. Therefore, temporal and spatial trending of water quality is necessary for planning water resource management. In this research, the performance of the six soft computing techniques, including, Random Forest, Reduced Error Pruning Tree (REPt), M5P model, bagging RF, bagging REPt and bagging M5P were compared to estimate the water quality index (WQI) in Khorramabad, Biranshahr and Alashtar sub-watersheds, Lorestan province, Iran. At first, based on water quality data, water quality index (WQI) was calculated and ten distinct water quality parameters (2014 to 2023) were used as input variables and WQI as output. Total data set consists of water quality parameters of three sub-watersheds out of which 70% data used to training and 30% data were used to testing phase. Finally, the models were compared with Correlation Coefficient (C.C.), Root Mean Square Error (RMSE), Maximum Absolute Error (MAE), Taylor diagram and Violin plot box. The obtained results suggest that the BM5P is more accurate to estimate the water quality index (WQI) compared to the M5P, ReepTree and Random Forest (RF) models for the given study area. According to the results of the test part of the BM5P model, it has given us the best result, which are the correlation coefficient, the Root Mean Square Error and the Mean Absolute Error 0.99, 0.2, and 0.15, respectively. Also, the Taylor diagram and violin box plot were concluded that BM5P was the most reliable soft computing technique for the prediction of WQI. Finally, the structure of Artificial Intelligence Techniques (AIT) for modeling is very simple and very less time consumable. Thus, the BM5P model can be useful in the water quality index (WQI) modeling not only for accuracy but also for its time-saving and simple structure compared with other models.

کلیدواژه‌ها [English]

  • Artificial Intelligence
  • Kharkheh watershed
  • Lorestan province
  • Modelling
  • Water Quality Index (WQI)
Abdelhefaz, A., Abbas, M. H. H., Kenawy, M. H., Ewis, A. M., & Hamed, M. H. (2021). Evaluation of underground water quality for drinking and irrigation purposes in New Valley Governorate, Egypt. Environmental Technology and Innovation, 22(3): 101486.
Aryen-Najad, R., Sarai Tabrizi, M., & Babazadeh, H. (2020). Modeling Water Quality of Rivers Using QUAL2Kw Model. Journal of Environmental Science and Technology, (7) 21: 1-13. (In persian).
Babakhani, Z., Sarai Tabrizi, M., & Babazadeh, H. (2020). Determination of River Self-Purification Capacity Using Qual2kw Mode Case Study: divandare River. Journal Ecohydrology, (3)6: 673-684. (In Persian).
Baldwin, R., Cave, M., & Lodge, M. (2011). Understanding Regulation: Theory, Strategy and Practice. 2nd ed. Oxford: Oxford University Press.
Bonakdar, L., & Etemad Shahidi, A. (2011). Predicting wave run-up on rubble-mound structures using M5 model tree. Ocean Engineering, (38), 111-118.
Breiman, L. (1996). Bagging predictors. Machin Learning, 24(2), 123–140. doi:10.1007/BF00058655‏.
Das, B., Rathore, P., Roy, D., Chakraborty, D., Singh Jatav, R., Deepak Sethi, D., & Praveen Kumar, P. (2022) Comparison of bagging, boosting and stacking algorithms for surface soil moisture mapping using optical-thermal-microwave remote sensing synergies. CATENA 217: 106485.
Deng, X., Ye, A., Zhong, J., Xu, D., Yang, W., Song, Zh., Zhang, Z., Guo, J., Wang, T., Tian, Y., Pan, H., Zhang, Zh., Wang, H., Wu, Ch., Shao, J., & Chen, X. (2022). Bagging–XGBoost algorithm based extreme weather identification and short-term load forecasting model. Energy Reports, 8: 8661-8674.
Dogan, E., Sengorur, B., & Koklu, R. (2009). Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique. Journal of Environmental Management, 90 (2), 1229–1235.
Duc, H., Nguyen, H. Q., Quang, N. X., Duy, H. N., & Thang, L. (2019). Spatio-temporal pattern of water quality in the Saigon-Dong Nai River system due to waste water pollution sources. International Journal of River Basin Management, 17:1-34.
Eidi, M., & Omiri, F. (2022). Groundwater quality assessment of Dehroud and Tang Eram regions of Dashtestan using water quality index (WQI). Journal of Renewable Natural Resources Research, 12: 2(36), 141-153. (in persian).
El-Rawy, M., Abdalla, F., & Negm, A.M. (2021). Groundwater Characterisation and Quality Assessment in Nubian Sandstone Aquifer, Kharga Oasis, Egypt. In Groundwater in Egypt’s Deserts; Springer: Cham, Switzerland; pp. 177–199.
El-Rawy, M., Batelaan, O., Alshehri, F., Almadani, S., Ahmed, M. S., & Elbeltagi, A. (2023). An Integrated GIS and Machine-Learning Technique for Groundwater Quality Assessment and Prediction in Southern Saudi Arabia. Water, 15, 2448. https://doi.org/10.3390/w15132448.
El-Rawy, M., Ismail, E., & Abdalla, O. (2019). Assessment of groundwater quality using GIS, hydrogeochemistry, and factor statistical analysis in Qena Governorate, Egypt. Desalination and Water Treatment, 162, 14–29.
Fathi, H., & El-Rawy, M. (2018). GIS-based evaluation of water quality index for groundwater resources nearby wastewater treatment plants, Egypt. Pollution Research, 37, 105–116.
Gupta, A. N., Kumar, D., & Singh, A. (2021). Evaluation of Water Quality Based on a Machine Learning Algorithm and Water Quality Index for Mid Gangetic Region (South Bihar plain), India. Journal of teh Geological Society of India, 97, 1063–1072.
Hameed, M. M., Masood, A., Srivastava, A., Rahman, N. A., Razali, S. F. M., & Elbeltagi, A. (2024). Investigating a hybrid extreme learning machine coupled with Dingo Optimization Algorithm for modeling liquefaction triggering in sand-silt mixtures. Scientific Reports 14. https://doi.org/10.1038/s41598-024-61059-6.
Jalili, M., Hosseini, M. S., Ehrampoush, M. H., Sarlak, M., Abbasi, F. & Fallahzadeh, R. A. (2019) Use of water quality index and spatial analysis to assess groundwater quality for drinking purpose in Ardakan, Iran. Journal of Environmental Health and Sustainable Development, 4(3): 834-842.
Jian-Hua, W., Pei-Yue, L., & Hui, Q. (2011). Groundwater Quality in Jingyuan County, a Semi Humid Area in Northwest China. Journal of Chemistry, 8(2):787-793.
Karimi, H., Rostamizad, Q., Moghadsifar, S. & Vakrim, A. (2023). The contribution of the two arms of Seyol and Qadh to the reduction of water quality of the Mime River; Determining the crisis points and providing solutions. Soil and Water Modeling and Management, 2(3), 79-93. (in Persian).
Kawo, N.S., & Karuppannan, S. (2018). Groundwater quality assessment using water quality index and GIS technique in Modjo River Basin, central Ethiopia. Journal of African Earth Sciences, 147: 300-311.
Khalili, R., Parvinnia, M., & Zali, A. (2020). Water quality assessment of Garmarood River using the national sanitation foundation water quality index (NSFWQI), river pollution index (RPI) and weighted arithmetic water quality index (WAWQI). Environment and Water Engineering, 6(3), 274–284.
Kostka, G. (2016). Command without control: the case of China’s environmental target system, Regulation and Governance, Wiley. 10(1): 58-74.
Kouadri, S., Pande, C.B., Panneerselvam, B., Moharir, K. N., & Elbeltagi, A. (2022). Prediction of irrigation groundwater quality parameters using ANN, LSTM, and MLR models. Environmental Science and Pollution Research. 29, 21067–2109.
Liang, J., Wang, Ch., Zhang, D., Xie, Y., Zeng, Y., Li, T., Zuo, Zh., Ren, J., & Zhao, Q. (2023). VSOLassoBag: a variable-selection oriented LASSO bagging algorithm for biomarker discovery in omic-based translational research, Journal of Genetics and Genomics, 50(3): 151-162.
Lohani, B. N., & Saleemi, A. R. (1982). Recent developments of stochastic programming model for water quality management, Water Supply Management, 6: 511-520.
Lu, Y., Song, S., Wang, R., Liu, Z., Meng, J., Sweetman, A. J., Jenkins, A., Ferrier, R. C., Li, H., Luo, W., & Wang, T. (2015). Impacts of soil and water pollution on food safety and health risks in China. Environment International, 77: 5–15.
Mohammadinejad, S. A., & Eghderanjad, A. (2020). Modeling groundwater qualitative changes using optimized artificial neural network model from a case study (Zidoon Plain). Environmental Health Research Quarterly, 7(4), 311-322. (in persian).
Mohammed, A. A. M., Szabo, N. P., & Szucs, P. (2022) Multivariate statistical and hydrochemical approaches for evaluation of groundwater quality in north Bahri city-Sudan. Heliyon 8(11): e11308. https://doi.org/10.1016/j.heliyon.2022.e11308.
Mohammed, M. A., Khleel, N. A., Szabo, N. P., & Szucs, P. (2023). Modeling of groundwater quality index by using artificial intelligence algorithms in northern Khartoum State, Sudan. Modeling Earth Systems and Environment9(2), 2501-2516.‏
Mokhtar, A., Elbeltagi, A., Gyasi-Agyei, Y., Al-Ansari, N., & Abdel-Fattah, M. K. (2022). Prediction of irrigation water quality indices based on machine learning and regression models. Applied Water Science, 12(76):1-14.
Muangthong, S. (2015). Assessment of surface quality using multivariate statistical techniques. Environmental Monitoring & Assessment, 11(1), 25-73.
Musaab, A. A. M., Nasraldeen, A. A. K., Norbert, P. S., & Peter, S. (2023). Modeling of groundwater quality index by using artificial intelligence algorithms in northern Khartoum State, Sudan. Modeling Earth Systems and Environment. 9:2501–2516. https://doi.org/10.1007/s40808-022-01638-6.
Noori, R., Berndstoon, R., Hosseinizadeh, M., Adamowski, J. F., & Rabiee Abyaneh, M. (2019). A critical review on the application of the National Sanitation Foundation Water Quality Index. Environmental Pollution, 244: 575-587.
Quinlan, J. R. (1992). Learning with continuous classes. in Proceedings of the 5th Australian joint Conference on Artificial Intelligence. Hobart: 343-348.
Rao, K. N. & Latha, P. S. (2019). Groundwater quality assessment using water quality index with a special focus on vulnerable tribal region of Eastern Ghats hard rock terrain, Southern India. Arabian Journal of Geosciences, 12(8): 1-16.
Saleem, M., Hussain, A. & Mahmood, G. (2016). Analysis of groundwater quality using water quality index: A case study of greater Noida (Region), Uttar Pradesh (UP), India. Cogent Engineering, 3(1): 1237927.
Sepahvand. A., Nazari Samani, A. A., Mohammadian, H., Ahmadi, H., & Feiz Nia, S. (2020). Seasonal variation of the solute and determine the solubility of limestone formations. Iranian Journal of Watershed Management Science and Engineering, 14(48), 21-32.
Shi, P., Zhang, Y., Li, Z. B., Li, P., & Xu, G. C. (2017). Influence of land use and land cover patterns on seasonal water quality at multispatial scales. Catena, 151, 182–190.
Shoemaker, C. M., Ervin, G. N., & Diorio, E. W. (2017). Interplay of water quality and vegetation in restored wetland plant assemblages from an agricultural landscape. Ecological Engineering, 108, 255–262.
Simoes, F. S., Moriera, A. B., Bisinoti, M. C., Gimenez, S. M. N., & Yabe, M. J. S. (2008). Water quality index as a simple indicator of aquaculture effects on aquatic bodies. Ecological indicators. 8: 476-484.
Singh, B., Sepahvand, A., Sihag, P., Singh, K., Prabha, Ch., Nag, A., Hassan, M., Vimal, S., & Kang, D. (2024). Development of soft computing-based models for forecasting water quality index of Lorestan Province, Iran, Scientific Reports, 14, Article number: 25980. https://doi.org/10.1038/s41598-024-76894-w
Singh, B., Sihag. P., Singh, V. P., Sepahvand, A. & Singh, K. (2021). Soft computing technique-based prediction of water quality index. Water Supply, 21(8), 4015-4029. doi: 10.2166/ws.2021.157.
Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres 106 (D7), 7183–7192.
Ubah, J. I., Orakwe, L. C., Ogbu, K. N., Awu, J. I., Ahaneku, I. E., & Chukwuma, E. C. (2021). Forecasting water quality parameters using artificial neural network for irrigation purposes. Scientific Reports, 11, 24438.
Vasant, W., Dipak, P., Aniket, M., Ranjitsinh, P., Shrikant, M., Nitin, D., Manesh, A., & Abhay, V. (2016). GIS and statistical approach to assess the groundwater quality of Nanded Tehsil, India. In: Proceedings of First International Conference on Information and Communication Technology for Intelligent Systems: Volume 1, Cham. Springer, pp. 409–417.
Verma, P., Singh, P. K., Sinha, R. R. & Tiwari, A. K. (2020). Assessment of groundwater quality status by using water quality index (WQI) and geographic information system (GIS) approaches: A case study of the Bokaro district, India. Applied Water Science, 10(1): 1-16.
Wagh, V. M., Panaskar, D. B., Muley, A. A., & Mukate, S. V. (2017). Groundwater suitability evaluation by CCME WQI model for Kadava river basin, Nashik, Maharashtra, India. Modeling Earth Systems and Environment, 3 (2), 557–565.
Wang, Y., & Witten, I. H. (1997). Inducing model trees for continuous classes. Proceedings of the Ninth European Conference on Machine Learning. Prague, Czech Republic: Springer.
Zare, A. G., Sadoddin, A., Sheikh, V., & Mahini, A. (2012). Long-term trend analysis of water quality variables for the Chehelchay River, Iranian Water Research Journal, 6(1(Serial number 10)): 155-165 (In Persian).
Zhang, R., Qian, X., Li, H., Yuan, X., & Ye, R. (2012). Selection of optimal river water quality improvement programs using QUAL2K: A case study of Taihu Lake Basin, China. Science of the Total Environment, 431:278-285.
Zielinski, M., Dopieralska, J., Belka, Z., Walczak, A., Siepak, M., & Jakubowicz, M. (2016). Sr isotope tracing of multiple water sources in a complex river system, Notec River, central Poland. Science of the Total Environment, 548, 307–316.