Abdelhefaz, A., Abbas, M. H. H., Kenawy, M. H., Ewis, A. M., & Hamed, M. H. (2021). Evaluation of underground water quality for drinking and irrigation purposes in New Valley Governorate, Egypt. Environmental Technology and Innovation, 22(3): 101486.
Babakhani, Z., Sarai Tabrizi, M., & Babazadeh, H. (2020). Determination of River Self-Purification Capacity Using Qual2kw Mode Case Study: divandare River. Journal Ecohydrology, (3)6: 673-684. (In Persian).
Baldwin, R., Cave, M., & Lodge, M. (2011). Understanding Regulation: Theory, Strategy and Practice. 2nd ed. Oxford: Oxford University Press.
Bonakdar, L., & Etemad Shahidi, A. (2011). Predicting wave run-up on rubble-mound structures using M5 model tree. Ocean Engineering, (38), 111-118.
Breiman, L. (1996). Bagging predictors. Machin Learning, 24(2), 123–140. doi:10.1007/BF00058655.
Das, B., Rathore, P., Roy, D., Chakraborty, D., Singh Jatav, R., Deepak Sethi, D., & Praveen Kumar, P. (2022) Comparison of bagging, boosting and stacking algorithms for surface soil moisture mapping using optical-thermal-microwave remote sensing synergies.
CATENA 217: 106485.
Deng, X., Ye, A., Zhong, J., Xu, D., Yang, W., Song, Zh., Zhang, Z., Guo, J., Wang, T., Tian, Y., Pan, H., Zhang, Zh., Wang, H., Wu, Ch., Shao, J., & Chen, X. (2022). Bagging–XGBoost algorithm based extreme weather identification and short-term load forecasting model.
Energy Reports, 8: 8661-8674.
Dogan, E., Sengorur, B., & Koklu, R. (2009). Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique. Journal of Environmental Management, 90 (2), 1229–1235.
Duc, H., Nguyen, H. Q., Quang, N. X., Duy, H. N., & Thang, L. (2019). Spatio-temporal pattern of water quality in the Saigon-Dong Nai River system due to waste water pollution sources.
International Journal of River Basin Management, 17:1-34.
El-Rawy, M., Abdalla, F., & Negm, A.M. (2021). Groundwater Characterisation and Quality Assessment in Nubian Sandstone Aquifer, Kharga Oasis, Egypt. In Groundwater in Egypt’s Deserts; Springer: Cham, Switzerland; pp. 177–199.
El-Rawy, M., Batelaan, O., Alshehri, F., Almadani, S., Ahmed, M. S., & Elbeltagi, A. (2023). An Integrated GIS and Machine-Learning Technique for Groundwater Quality Assessment and Prediction in Southern Saudi Arabia.
Water, 15, 2448.
https://doi.org/10.3390/w15132448.
El-Rawy, M., Ismail, E., & Abdalla, O. (2019). Assessment of groundwater quality using GIS, hydrogeochemistry, and factor statistical analysis in Qena Governorate, Egypt. Desalination and Water Treatment, 162, 14–29.
Fathi, H., & El-Rawy, M. (2018). GIS-based evaluation of water quality index for groundwater resources nearby wastewater treatment plants, Egypt. Pollution Research, 37, 105–116.
Gupta, A. N., Kumar, D., & Singh, A. (2021). Evaluation of Water Quality Based on a Machine Learning Algorithm and Water Quality Index for Mid Gangetic Region (South Bihar plain), India.
Journal of teh Geological Society of India, 97, 1063–1072.
Hameed, M. M., Masood, A., Srivastava, A.,
Rahman, N. A.,
Razali, S. F. M., &
Elbeltagi, A. (2024). Investigating a hybrid extreme learning machine coupled with Dingo Optimization Algorithm for modeling liquefaction triggering in sand-silt mixtures.
Scientific Reports 14. https://doi.org/10.1038/s41598-024-61059-6.
Jalili, M., Hosseini, M. S., Ehrampoush, M. H., Sarlak, M., Abbasi, F. & Fallahzadeh, R. A. (2019) Use of water quality index and spatial analysis to assess groundwater quality for drinking purpose in Ardakan, Iran. Journal of Environmental Health and Sustainable Development, 4(3): 834-842.
Jian-Hua, W., Pei-Yue, L., & Hui, Q. (2011). Groundwater Quality in Jingyuan County, a Semi Humid Area in Northwest China. Journal of Chemistry, 8(2):787-793.
Karimi, H., Rostamizad, Q., Moghadsifar, S. & Vakrim, A. (2023). The contribution of the two arms of Seyol and Qadh to the reduction of water quality of the Mime River; Determining the crisis points and providing solutions. Soil and Water Modeling and Management, 2(3), 79-93. (in Persian).
Kawo, N.S., & Karuppannan, S. (2018). Groundwater quality assessment using water quality index and GIS technique in Modjo River Basin, central Ethiopia. Journal of African Earth Sciences, 147: 300-311.
Khalili, R., Parvinnia, M., & Zali, A. (2020). Water quality assessment of Garmarood River using the national sanitation foundation water quality index (NSFWQI), river pollution index (RPI) and weighted arithmetic water quality index (WAWQI). Environment and Water Engineering, 6(3), 274–284.
Kostka, G. (2016). Command without control: the case of China’s environmental target system, Regulation and Governance, Wiley. 10(1): 58-74.
Kouadri, S., Pande, C.B., Panneerselvam, B., Moharir, K. N., & Elbeltagi, A. (2022). Prediction of irrigation groundwater quality parameters using ANN, LSTM, and MLR models.
Environmental Science and Pollution Research. 29, 21067–2109.
Liang, J., Wang, Ch., Zhang, D., Xie, Y., Zeng, Y., Li, T., Zuo, Zh., Ren, J., & Zhao, Q. (2023). VSOLassoBag: a variable-selection oriented LASSO bagging algorithm for biomarker discovery in omic-based translational research,
Journal of Genetics and Genomics, 50(3): 151-162.
Lohani, B. N., & Saleemi, A. R. (1982). Recent developments of stochastic programming model for water quality management, Water Supply Management, 6: 511-520.
Lu, Y., Song, S., Wang, R., Liu, Z., Meng, J., Sweetman, A. J., Jenkins, A., Ferrier, R. C., Li, H., Luo, W., & Wang, T. (2015). Impacts of soil and water pollution on food safety and health risks in China. Environment International, 77: 5–15.
Mohammadinejad, S. A., & Eghderanjad, A. (2020). Modeling groundwater qualitative changes using optimized artificial neural network model from a case study (Zidoon Plain). Environmental Health Research Quarterly, 7(4), 311-322. (in persian).
Mohammed, A. A. M., Szabo, N. P., & Szucs, P. (2022) Multivariate statistical and hydrochemical approaches for evaluation of groundwater quality in north Bahri city-Sudan.
Heliyon 8(11): e11308.
https://doi.org/10.1016/j.heliyon.2022.e11308.
Mohammed, M. A., Khleel, N. A., Szabo, N. P., & Szucs, P. (2023). Modeling of groundwater quality index by using artificial intelligence algorithms in northern Khartoum State, Sudan. Modeling Earth Systems and Environment, 9(2), 2501-2516.
Mokhtar, A., Elbeltagi, A., Gyasi-Agyei, Y., Al-Ansari, N., & Abdel-Fattah, M. K. (2022). Prediction of irrigation water quality indices based on machine learning and regression models. Applied Water Science, 12(76):1-14.
Muangthong, S. (2015). Assessment of surface quality using multivariate statistical techniques. Environmental Monitoring & Assessment, 11(1), 25-73.
Musaab, A. A. M., Nasraldeen, A. A. K., Norbert, P. S., & Peter, S. (2023). Modeling of groundwater quality index by using artificial intelligence algorithms in northern Khartoum State, Sudan.
Modeling Earth Systems and Environment. 9:2501–2516.
https://doi.org/10.1007/s40808-022-01638-6.
Noori, R., Berndstoon, R., Hosseinizadeh, M., Adamowski, J. F., & Rabiee Abyaneh, M. (2019). A critical review on the application of the National Sanitation Foundation Water Quality Index. Environmental Pollution, 244: 575-587.
Quinlan, J. R. (1992). Learning with continuous classes. in Proceedings of the 5th Australian joint Conference on Artificial Intelligence. Hobart: 343-348.
Rao, K. N. & Latha, P. S. (2019). Groundwater quality assessment using water quality index with a special focus on vulnerable tribal region of Eastern Ghats hard rock terrain, Southern India. Arabian Journal of Geosciences, 12(8): 1-16.
Saleem, M., Hussain, A. & Mahmood, G. (2016). Analysis of groundwater quality using water quality index: A case study of greater Noida (Region), Uttar Pradesh (UP), India. Cogent Engineering, 3(1): 1237927.
Sepahvand. A., Nazari Samani, A. A., Mohammadian, H., Ahmadi, H., & Feiz Nia, S. (2020). Seasonal variation of the solute and determine the solubility of limestone formations. Iranian Journal of Watershed Management Science and Engineering, 14(48), 21-32.
Shi, P., Zhang, Y., Li, Z. B., Li, P., & Xu, G. C. (2017). Influence of land use and land cover patterns on seasonal water quality at multispatial scales. Catena, 151, 182–190.
Shoemaker, C. M., Ervin, G. N., & Diorio, E. W. (2017). Interplay of water quality and vegetation in restored wetland plant assemblages from an agricultural landscape. Ecological Engineering, 108, 255–262.
Simoes, F. S., Moriera, A. B., Bisinoti, M. C., Gimenez, S. M. N., & Yabe, M. J. S. (2008). Water quality index as a simple indicator of aquaculture effects on aquatic bodies. Ecological indicators. 8: 476-484.
Singh, B., Sepahvand, A., Sihag, P., Singh, K., Prabha, Ch., Nag, A., Hassan, M., Vimal, S., & Kang, D. (2024). Development of soft computing-based models for forecasting water quality index of Lorestan Province, Iran, Scientific Reports, 14, Article number: 25980. https://doi.org/10.1038/s41598-024-76894-w
Singh, B., Sihag. P., Singh, V. P., Sepahvand, A. & Singh, K. (2021). Soft computing technique-based prediction of water quality index. Water Supply, 21(8), 4015-4029. doi: 10.2166/ws.2021.157.
Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres 106 (D7), 7183–7192.
Ubah, J. I., Orakwe, L. C., Ogbu, K. N., Awu, J. I., Ahaneku, I. E., & Chukwuma, E. C. (2021). Forecasting water quality parameters using artificial neural network for irrigation purposes. Scientific Reports, 11, 24438.
Vasant, W., Dipak, P., Aniket, M., Ranjitsinh, P., Shrikant, M., Nitin, D., Manesh, A., & Abhay, V. (2016). GIS and statistical approach to assess the groundwater quality of Nanded Tehsil, India. In: Proceedings of First International Conference on Information and Communication Technology for Intelligent Systems: Volume 1, Cham. Springer, pp. 409–417.
Verma, P., Singh, P. K., Sinha, R. R. & Tiwari, A. K. (2020). Assessment of groundwater quality status by using water quality index (WQI) and geographic information system (GIS) approaches: A case study of the Bokaro district, India. Applied Water Science, 10(1): 1-16.
Wagh, V. M., Panaskar, D. B., Muley, A. A., & Mukate, S. V. (2017). Groundwater suitability evaluation by CCME WQI model for Kadava river basin, Nashik, Maharashtra, India. Modeling Earth Systems and Environment, 3 (2), 557–565.
Wang, Y., & Witten, I. H. (1997). Inducing model trees for continuous classes. Proceedings of the Ninth European Conference on Machine Learning. Prague, Czech Republic: Springer.
Zhang, R., Qian, X., Li, H., Yuan, X., & Ye, R. (2012). Selection of optimal river water quality improvement programs using QUAL2K: A case study of Taihu Lake Basin, China. Science of the Total Environment, 431:278-285.
Zielinski, M., Dopieralska, J., Belka, Z., Walczak, A., Siepak, M., & Jakubowicz, M. (2016). Sr isotope tracing of multiple water sources in a complex river system, Notec River, central Poland. Science of the Total Environment, 548, 307–316.