مقایسة روش‌های نروفازی و SCS در اولویت‌بندی زیرحوضه‌های آبخیز به منظور اجرای اقدامات آبخیزداری (مطالعة موردی: حوضة آبخیز طالقان)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران

2 استاد گروه احیای مناطق خشک و کوهستانی، دانشکدة منابع طبیعی، دانشگاه تهران، ایران

3 استادیار گروه مهندسی آبخیزداری، دانشکدة منابع طبیعی دانشگاه تربیت مدرس، نور، ایران

4 دانشیار گروه احیای مناطق خشک و کوهستانی، دانشکدة منابع طبیعی، دانشگاه تهران، ایران

چکیده

به دلیل ناکافی‌بودن امکانات، بودجه، نیروی انسانی، زمان، و ... عملیات آبخیزداری در کل سطح حوضة آبخیز قابل اجرا نیست. به همین دلیل، عملیات آبخیزداری باید در زیرحوضه‌هایی اجرا شود که اثرگذارتر است و از نظر تخریب، فرسایش، خسارات جانی و مالی، سیلاب، و ... بیشتر در معرض خطر باشد. همچنین، نقص ایستگاه‌های هیدرومتری یا فقدان ایستگاه‌ها در برخی مناطق متخصصان را بر آن داشته تا برای اولویت‌بندی زیرحوضه‌ها به دنبال روش‌هایی باشند که با استفاده از خصوصیات در دسترس زیرحوضه‌‌ها، در مناطق مختلف جغرافیایی، به‌درستی عمل کند. در تحقیق حاضر امکان استفاده از روش‌های نروفازی و SCS در مدل HEC-HMS، که محدودة وسیعی از مزایا و معایب را می‌توانند در تصمیم‌گیری‌ها لحاظ نمایند، بررسی شد. برای تعیین صحت نتایج روش‌های مختلف، میزان دبی خروجی از زیرحوضه‌های طالقان طی یک سال آماری برداشت شد. نتایج به‌دست‌آمده از این دو روش با حداکثر دبی با دورة بازگشت دوسالة مشاهداتی زیرحوضه‌ها مقایسه شد. نتایج نشان داد بهترین اولویت‌بندی مربوط به روش نروفازی است و در مقایسه با SCS، بر اساس ضرایب خطا و تبیین مربوط به مقایسة داده‌‌های مشاهداتی و برآوردشده، بهترین برآوردها را داشته است.

کلیدواژه‌ها


 

[1] Aqil, M., Kita, I., Yano, A. and Nishiyama, S. (2007a). Analysis and prediction of flow from local source in a river basin using a Neuro-fuzzy modeling tool, Journal of Environmental Management, 85, 215-223.
[2] Aqil, M., Kita, I., Yano, A. and Nishiyama, S. (2007b). A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff, Journal of Hydrology, 337, 22-34.
[3] Arbind, K., Verma, M., Rajesh, K. and Mahana, K. (2010). Evaluation of HEC-HMS and WEPP for simulating watershed runoff using remote sensing and geographical information system, Paddy Water Environ, 8, 131-144.
[4] Bhola, K., Punit and Singh, A. (2010). Rainfall-runoff modeling of river Kosi using SCS-CN method and ANN, Bachelor thesis, Rourkela.
[5] Chen, S., Lin, Y., Chang, L. and Chang, F. (2006). The strategy of building a flood forecast model by neuro fuzzy network, Hydrological processes, 20, 1525-1540.
[6] Fathabadi, A. (2007). River flow prediction by Neurofuzzy and time series analysis, M.Sc. thesis, Tehran University.
[7] Firat, M. and Güngör, M. (2007). River flow estimation using adaptive neuro fuzzy inference system, Mathematics and Computers in Simulation, 75, 87-96.
[8] Foody, G., Ghoneim, E. and Arnell, W. (2004). Predicting Location Sensitive to Flash Flooding in Arid Environment, Journal of Hydrology, 292, 48-58.
[9] Han, J. (2002). Application of artificial neural networks for flood warning systems, Ph.D. thesis, North Carolina University.
[10] Jahangir, A. (2004). Rainfall-runoff simulation with artificial neural network (ANN) and HEC-HMS model in Kardeh watershed, M.Sc. thesis, Sari University.
[11] Jahangir, A., Raeini, M. and Ahmadi, M.Z. (2008). Rainfall-runoff simulation with artificial neural network (ANN) and HEC-HMS model in Kardeh watershed, Water and Soil Journal, 22, 72-84.
[12] Jang, J.S. (1993). ANFIS: adaptive-network-based fuzzy inference system, IEEE Transactions on Systems, Management and Cybernetics, 23, 665-685.
[13] Khedri-Tajan, B. (2003). Application of fuzzy logic in prioritizing watershed management operations in the Shahrestanak watershed, M.Sc. thesis, Tarbiat Modares, 110pp.
[14] Khosravi, M. (2008). Flood forecasting by artificial neural networks and emprical equations (Case study: Taleghan watershed), M.Sc. thesis, Tehran University.
[15] Khosroshahi, M. and Saghafian, B. (2003). Determination of sub-basins Participation in flood density, Pajouhesh va Sazandegi, 16, 67-75.
[16] Kisi, O., Haktanir, T., Ardiclioglu, M., Ozturk, O., Yalcin, E. and Uludag, S. (2009). Adaptive neuro-fuzzy computing technique for suspended sediment estimation, Advances in Engineering Software, 40, 438-444.
[17] Klausmeyer, K. (2005). Effects of climate change on the hydrology of upper Alameda Creek, M.Sc. thesis, University of California.
[18] Kurtulus, B. and Razack, M. (2010). Modeling daily discharge responses of a large karstic aquifer using soft computing methods: Artificial neural network and neuro-fuzzy, Journal of Hydrology, 381, 101-111.
[19] Mahdavi, M. (2002). Applied Hydrology, 2nd Volume, University of Tehran Press.
[20] Nayak, P.C., Sudheer, K.P., Rangan, D.M. and Ramasastri, K.S. (2004). A neuro-fuzzy computing technique for modeling hydrological time series, Journal of Hydrology, 291, 52-66.
[21] Roughani, M., Ghafouri, M. and Tabatabaei, M. (2007). An innovative methodology for the prioritization of sub-catchments for flood control, International Journal of Applied Earth Observation and Geoinformation, 9, 79-87.
[22] Salajeghe, A. and Fathabadi, A. (2009). Suspended sediment evaluation by fuzzy logic and artifial network, Iranian Journal of Natural Resources (Range and Watershed Management), 62, 271-282.
[23] Talei, A., Chua, L.H. and Quek, C. (2010). A novel application of a neuro-fuzzy computational technique in event-based rainfall-runoff modeling, Expert Systems with Applications, 37, 7456-7468.
[24] Trahan, M. (2005). Hydrology model of the silver river watershed Baraga country, M.Sc. thesis, Michigan Technological University.
[25] USACE (2000). HEC-HMS Technical Manual, Hydrologic Engineering Center, Davis.
[26] USDI (1975). Water measurement manual, United States government printing office, bureau of reclamation, Washington.
[27] Vafakhah, M. (2008). Simulating snow discharge by artifical neural network, fuzzy logic and measurment data of snow in Taleghan watershed, Ph.D. thesis, Tehran University.
[28] Vafakhah, M. (2012). Application of artificial neural networks and adaptive neuro-fuzzy inference system models to short-term streamflow forecasting, Canadian Journal of Civil Engineering, 39, 402-414.