مقایسة روش‌های زمین‌آماری و شبکة عصبی مصنوعی در برآورد توزیع مکانی عمق برف (مطالعة موردی: حوضة آبخیز سخوید، یزد)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار دانشکدة کشاورزی و منابع طبیعی، دانشگاه اردکان، ایران

2 کارشناس‌ارشد آبخیزداری، دانشکدة منابع طبیعی، دانشگاه یزد، ایران

چکیده

در بسیاری از حوضه‌های آبخیز کوهستانی، برف انباشته‌شده در برفچال‌ها ذخیرة درخور ‌توجهی از منابع آب حوضه‌ها را تأمین می‌کند. بنابراین، پایش این رژیم هیدرولوژیکی، به‌ویژه بررسی توزیع مکانی ذخایر برفی، از نیازهای اساسی مدیران منابع آب به‌شمار می‌رود. به دلیل سخت‌بودن و حتی در برخی موارد ناممکن‌بودن آماربرداری از داده‌های برف، توسعة روش‌هایی برای برآوردِ عمقِ برف در نقاط فاقد اندازه‌گیری و نیز بررسی دامنة کاربرد آن‌ها امری ضروری است. در این پژوهش محدوده‌ای به مساحت 16 هکتار در حوضة آبخیز سخوید تفت انتخاب شد و با بهره‌گیری از 216 داده عمق برف و دخالت 31 پارامتر سرزمین، به ارزیابی کارایی روش‌های زمین‌آماری (کریجینگ، کوکریجینگ، روش عکس فاصله) و روش شبکة عصبی مصنوعی در برآورد توزیع مکانی عمق برف پرداخته شد. نتایج این تحقیق نشان داد روش شبکة عصبی مصنوعی با ضریب همبستگی 9/0 و مجذور میانگین استاندارد خطای 8/6 سانتی‌متر مناسب‌ترین روش برای برآورد عمق برف در منطقة مورد مطالعه است. همچنین، بهترین مدل عصبی به‌دست‌آمده از روش سعی و خطا در این تحقیق مدل پرسپترون چندلایه و بهترین تابع فعالیت تابع سیگموئید تعیین شد. نتایج آنالیز حساسیت با استفاده از شبکة عصبی مصنوعی نیز نشان داد که از بین پارامترهای به‌کاررفته در شبکة عصبی مصنوعی پارامترهای مقطع طولی انحنا، انحنا، مقطع عرضی انحنا، اثر باد، شیب حوضه، ارتفاع نرمال‌شده، موقعیت و شیب میانه به‌ترتیب جزو مؤثرترین عوامل در برآورد عمق برف‌اند.

کلیدواژه‌ها


 

[1] ‏Ahmad, S. and Simonovic, S.P. (2005). An artificial neural network model for generating hydrograph from hydrometeorological parameters, J. Hydrol, 315, 236-251.
[2] Agarwal, A., Mishra, S.K., Ram, S. and Singh, J.K. (2006). Simulation of runoff and sediment yield using artificial neural networks, Biosys. Eng, 94(4), 597-613.
[3] Amini, M., Abbaspour, K.C., Khademi, H., Fathianpour, N., Afyuni, M. and Schulin, R. (2005). Neural network models to predict cation exchange capacity in arid regions of Iran, European Journal of Soil Science, 53, 748-757.
[4] Balk, B. and Elder, K. (2000). Combining binary decision tree and geostatistical methods to estimate snow distribution in a mountain watershed, Water Resources Research, 36, 13-26.
[5] Bagheri Fahrji, R. (2011). Estimating the satial distribution of snow water equivalent in mountain watersheds using geostatistic methods (Case study: Bidakhovid), M.Sc. thesis, Islamic Azad University Maybod branch.
[6] Carrol, S.S. and Cressie, N. (1996). Acomparison of geostatistical methodologies used to estimate snow water equivalent, Water Resources Bull., 32, 267-278.
[7] Chen, J. and Adams, B.J. (2006). Integration of artificial neural networks with conceptual models in rainfall-runoff modeling, J. Hydrol, 318, 232-249.
[8] Elder, K., Dozier, G. and Michaelsen, J. (1991). Snow Accumulation and Distribution in an Alpine Watershed, Water Resources Research, 27(7), 1541-1552.
[9] Elder, K., Michaelsen, J. and Dozzier, J. (1995). Small basin modeling of snow water equivalence using binary regression tree methods, IAHS Publ., No. 228.
[10] Elder, K., Rosenthal, R. and Davis, R.E. (1998). Estimating the spatial distribution of snow water equivalence in a mountain watershed, Hydrological Processes, 12, 1793-1808.
[11] Erickson, T.A., Williams, M.W. and Winstral, A. (2005). Persistence of topographic controls on the spatial distribution of snow in rugged mountain, Colorado, United States, Water Resources Research, 41, 1-17.
[12] Erxleben, J., Elder, K. and Davis, R. (2002). Comparison of spatial interpolation methods for estimating snow stribution in Colorado Rocky Mountains, Hydrological Processes, 16, 3627-3649.
[13] Fathzadeh, A. (2008). Estimating the spatial distribution of snow water equivalent in Karaj watershed using remote sensing and energy balance model, PhD thesis, Tehran University.
[14] Gayoor, H., Kavyani, M., Mohseni, B. (2004). Estimates of coverage and the amount of snowfall in the mountains north of Tehran Case Study: River Basin Rehabilitation (Darband and Glabdarh), Journal of Geographical Research.
[15] ‏Hassani Pak, A. (1998). Geostatistics, Tehran University Publications.
[16] Hosang, J. and Dettwiler, K. (1991). Evalution of a water equivalent of snow cover map in a small catchment area using a geostatistical approach, Hydrological Processes, 5, 283-290.
[17] Huang, M., Peng, G., Zhang, J. and Zhang, S. (2006). Application of artificial neuralnetworks to the prediction of dust storms in Northwest China, Global and Plantetary Change, 52, 216-224.
[18] Marchand, W.D. and Killingtveit, A. (2001). Analyses of the Relation between Spatial Snow Distribution and Terrain Characteristics, 58th Estern Snow Conference Ottawa, Ontario, Canada.
[19] Marchand, W.D. and Killingtveit, A. (2005). Statistical probability distribution of snow depth at the model sub-grid cell spatial scale, Hydrological Processes, 19, 355-369.
[20] Menhaj, M. (2007). Fundamental of Artificial neural networks, Amirkabir Press.
[21] Mohammadi, J. (2001). Considering geostatistics and its application in soil science, Journal of Soil & Water Science, 15(1), 99-121 (In Farsi).
[22] Molotch, N.P., Colee, M.T., Bales, R.C. and Dozier, J. (2005). Estimating the spatial distribution of snow water equivalent in an alpine basin using binary regrnion tree models: the impact of digital elevation data independent variable selection, Hydrological Processes, 19, 1459-1479.
[23] Najafi, M., Sheykhivand, J. and Porhemat, J. (2006). Runoff from melting snow in snowy areas using SRM (Case Study Mahabad), Journal of Agricultural Sciences and Natural Resources (In Farsi).
[24] Roebber, P.J., Bruening, S.L., Schultz, D.M. and Cortinas JR., J.V. (2002). Improving snowfall forecasting by diagnosing snow density, Weather and Forecast, 18, 264-287.
[25] Sharifi, M.R., Akhund Ali, M. and Porhemat, J. (2007). Assess the linear correlation and ordinary kriging method to estimate the spatial distribution of snow depth in the watershed Samsami, Journal of Watershed Management Science & Engineering, 1(1), 24-38 (In Farsi).
[26] Topsoba, D., Fortin, V., Anctil, F. and Hache, M. (2008). Use of the kriging technique with external drift for a map of the water equivalent of snow: application to the Gatineau River Basin, 32(1), 289-297.
[27] Tedesco, M., Pulliainen, J., Takala, M., Hallikainen, M. and Pampaloni, P. (2004). Artificial neural network-based techniques for the retrieval of SWE and snow depth from SSM/I data, Remote Sens. Environ, 90, 76-85.
[28] Tryhorn, L. and DeGaetano, Art (2012). A methodology for statistically downscaling seasonal snow cover characteristics over the Northeastern United States, 10. 1002/joc. 3626.
[29] Vafakhah, M., Mohseni Saravi, M., Mahdavi, M., Alavi Panah, S.k. (2008). Geostatistics application to estimate snow depth and density in the watershed Ourazan, Journal of Watershed Management Science & Engineering, 4(2), 49-55 (In Farsi).
[30] Vaziri, F. (2003). Applied hydrology in Iran-The second book: Identification of glaciers in Iran, Publication Management and Planning Organization.
[31] Zareabyaneh, H. (2012). Estimating the spatial distribution of snow water equivalent and snow density using ANN method (Case study watershed Azarbayejan), Journal of Water Resources Engineering, 5(15), 1-12 (In Farsi).