ارزیابی پایداری خاکدانه‏ ها و تعیین مکانیسم ناپایداری خاک‏ های حوضۀ آبخیز طالقان

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار دانشگاه یاسوج

2 استاد دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران

3 دانشیار مؤسسة تحقیقات جنگل‏ها و مراتع کشور

4 دانشیار دانشکدة منابع طبیعی دانشگاه تهران

5 دانشیار پژوهشکدة حفاظت خاک و آبخیزداری

6 دانشجوی دورة دکتری محیط زیست دانشگاه ملایر

چکیده

با توجه به محدودیت‏های موجود در تعیین میزان حساسیت خاک به فرسایش آبی یا فرسایش‏پذیری خاک از طریق آزمون‏های میدانی، کاربردِ روش‏های آزمایشگاهی روی نمونه‏های کوچک خاک (کمتر از 100 گرم)، افزون بر ساده‌بودن، نیازمند هزینه و وقت کمتری است. نتایجِ پژوهش‏های مختلف در این زمینه بیانگر آن است که از بین روش‏های مختلف آزمایشگاهی، مبنی بر استفاده از خصوصیات خاک، آزمون‏های مربوط به ساختمان خاک و پایداری خاکدانه‏ها مؤثرتر است و به آن‌ها بیشتر توجه شده است. در این تحقیق، با تکیه بر مشاهدات و تغییرات ماکروسکوپی در مقیاس واحدهای همگن، در بخشی از خاک‏های حوضة آبخیز طالقان، به وسعت 3260 هکتار، 84 نقطه به عنوان نقاط نمونه‏برداری خاک انتخاب شد. به منظور تمایز بین مکانیسم‏های شکستگی خاکدانه‏ها و ارزیابی رفتار ساختمانی خاک‏ها در  شرایط مختلف محیطی، پایداری خاکدانه‏ها با لحاظ‏کردن سه تیمار خیس‏شدن سریع خاکدانه‏ها، خیس‏شدن آهستة خاکدانه‏ها و شکستگی ناشی از تکان‏دادن خاک پس از خیس‏کردن اولیه و با استفاده از روش لی‏بیسونایس اندازه‏گیری شد. اثر اَشکال مختلف فرسایش آبی بر پایداری خاکدانه‌ها نیز با استفاده از شاخص پایداری مرطوب خاکدانه‏ها بررسی شد. نتایج نشان داد مکانیسم‏های مختلف شکستگی خاکدانه‏ها اثر معنی‏داری در میزان شکستگی خاکدانه‏ها دارد. مکانیسم ناپایداری خاک‏های طالقان فرایند واریختگی است که در اثر فشار هوای محبوس‏شده در هنگام خیس‏شدن سریع خاکدانه‏ها ایجاد می‏شود و این شرایط هنگام وقوع باران‏های شدید روی خاک خشک رخ می‏دهد. همچنین، نتایج نشان داد اختلاف معنی‏داری بین پایداری مرطوب خاکدانه‏ها در اَشکال مختلف فرسایش آبی وجود ندارد.

کلیدواژه‌ها


[1] Barthès, B. and Roose, E. (2002). Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels, Catena, 47, 133-149.
[2] Boiffin, J. (1984). La degradation structure des couches superficielles du sol sous laction des pluies, These de Docteur-Ingenieur, Institute National Agronomique-Paris Grignon.
[3] Bryan, R.B. (2000). Soil erodibility and processes of water erosion on hillslope, Geomorphology, 32, 385-415.
[4] Cammeraat, L.H. and Imeson, A.C. (1998). Deriving indicators of soil degradation from soil aggregation studies in southeastern Spain and southern France, Geomorphology, 23, 307-321.
[5] Cerdá, A. (1998). Soil aggregate stability under different Mediterranean vegetation types, Catena, 32, 73-86.
[6] Concaret, J. (1967). Etude des mecanismes de destruction des agregats de terre au contact de solutions aqueuses, Annales Agronomiques, 18, 99-144.
[7] Chan, K.Y. and Mullins, C.E. (1994). Slaking characteristics of some Australian and British soils, European Journal of soil Science, 45, 273-283.
[8] De Ploey, J. and Poesen, J. (1985). Aggregate stability, runoff generation and interrill erosion, In: Richards, K.S., Arnett, R.R., Ellis, S. (Eds.), Geomorphology and Soils, George Allen& Unwin, London, pp. 99-120.
[9] Dimoyiannis, D. (2011). Wet aggregate stability as affected by excess carbonate and other soil properties, Land Degradation Development, Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/ldr.1085.
[10] Dunne, T., Zhang, W. and Aubry, B.F. (1991). Effects of rainfall, vegetation and microtopography on infiltration and runoff, Water Resources Research, 27, 2271-2285.
[11] Elliot, E.T. (1986). Aggregate structure and carbon, nitrogen and phosphorus in native and cultivated soils, Soil Science Society of America Journal, 50, 627-633.
[12] Emerson, W.W. (1967). A classification of soil aggregate based on their coherence in water, Australian Journal of Soil Research, 5, 47-57.
[13] Emerson, W.W. and Greenland, D.J. (1990). Soil aggregate formation and stability, In: Soil colloids and their association in aggregates (Eds M. De Boodt, M. Hayes, A. Herbillon), pp. 485-511. Plenum Press, New York.
[14] Farres, P.J. (1987). The dynamics of rainsplash erosion and the role of soil aggregate stability, Catena,14, 119-130.
[15] Feng-Ling, Y., Zhi-Hua, S., Zhao-Xia, L. and Chong-Fa, Cai. (2008). Estimating interrill soil erosion from aggregate stability of Ultisols in subtropical China, Soil and Tillage Research, 34-41.
[16] Gee, G.W. and Bauder, J.W. (1986). Particle-size analysis, In: Klute, A. (Ed.), Methods of Soil Anlysis, part I. Physical and Mineralogical Methods, 2nd edition, Agronomy 9, American Society of Agronomy, Madison, WI, pp. 383-411.
[17] Grieve, I.C. (1980). The magnitude and significance of soil structural stability declines under cereal cropping, Catena, 7, 79-85.
[18] Henin, S., Monnier, G. and Combeau, A. (1958). Method pour l’etude de la stabilite structurale des sols, Annales Agronomiques, 9, 73-92.
[19] Hillel, D. (2004). Introduction to environmental soil physics, Elsevier Academic Press, Amsterdam, 949 p.
[20] Kemper, W.D. and Rosenau, R.C. (1984). Soil cohesion as affected by time and water content, Soil Science Society of American Journal, 48, 1001-1006.
[21] Kemper, W.D. and Rosenau, R.C. (1986). Aggregate stability and size distribution, In: Method of Soil Analysis, part 1, Agronomy Monographs 9 (ed. A. Klute). American Society of Agronomy, Mdison, WI.
[22] Kheyrabi, W.D. and Monnier, G. (1968). Etude experimental de l’influence de la composition granulometrique des terres sur leur stabilite structurale, Annales Aggronomiques, 19, 129-152.
[23] Lal, R. (1990). Soil Erosion in the Tropics, Principles and Management, McGraw-Hill, NewYork.
[24] Le Bissonnais, Y. (1988). Analyse des mecanismes de desagregation et de la mobilization des particules de terre sous l’action des pluise, These de Doctorat, Universite d’Orleans.
[25] Le Bissonnais, Y. (1989). Contribution a l’etude de la degradation structure superfielle: analyse des processus de microfissuration des agregats par l’eau, Science du Sol, 27, 187-199.
[26] Le Bissonnais, Y. (1996). Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology, European Journal of Soil Science, 47, 425-437.
[27] Merzouk, A. and Blake, G.R. (1991). Indices for estimation of interrill erodibility of Moroccan soils, Catena, 18, 537-550.
[28] Mohammad Zadeh, Z. (2011). Cementing factors and aggregate stability indices as an estimate of the coefficient of inter-rill erodibility, Soil Science M.Sc Thesis, University of Tabriz.
[29] Nearing, M.A. and Bradford, H.M. (1985). Single waterdrop splash detachment and mechanical properties of soils, Soil Science Society of America Journal, 49, 547-552.
[30] Nelson, D.W. and Sommers, L.E. (1982). Total carbon, organic carbon, and organic matter, In: Page,  L.A., Miller, R.H., Kenney, D.R. (Eds.), Methods of Soil Analysis, Part 2, Chemical and Microbiological Methods, 2nd edition, American Society of Agronomy, Madison, WI, pp. 539-579.
[31] Oades, J.M. (1988). The retention of organic matter in soils, Biogeochemistry, 5, 35-70.
[32] Oades, J.M. and Waters, A.G. (1991). Aggregate hierarchy in soils, Australian Journal of Soil Research, 29, 815-828.
[33] Panabokke, C.R. and Quirk, J.P. (1957). Effect of initial water content on stability of soil aggregates in water, Soil Science, 83, 185-195.
[34] Rejman, J., Turski, R. and Paluszek, J. (1998). Spatial and temporal variations in erodibility of loess soil, Soil and Tillage Research, 46, 61-68.
[35] Rengasamy, P. and Olsson, K.A. (1991). Sodicity and soil structure, Australian Journal of Soil Research, 29, 935-952.
[36] Romkens, M.J.M., Roth, C.B. and Nelson, D.W. (1977). Erodibility of selected clay subsoils in relation to physical and chemical properties, Soil Science Society of American Journal, 41, 954-960.
[37] Shainberg, I. (1992). Chemical and mineralogical components of crusting, In: Soil crusting: Physical and Chemical Processes (Eds M.E. Sumner and B.A. Stewart), pp. 33-54. Lewis, Boca Raton, Florida.
[38] Six, J., Elliott, E.T. and Paustian, K. (2000). Soil structure and soil organic matter: II. A Normalized stability index and the effect of mineralogy, Soil Science Society of American Journal, 64, 1042-1049.
[39] Statistical Package for the Social Sciences Inc. (2008). SPSS Advanced Statistics 16.0.2 SPSS Inc., Chicago.
[40] Sumner, M.E. (1992). The electrical double layer and clay dispersion, In: Soil crusting: Physical and Chemical Processes (Eds M.E. Sumner and B.A. Stewart), pp. 1-31. Lewis, Boca Raton, Florida.
[41] Tisdall, J.M. and Oades, J.M. (1982). Organic matter and water-stable aggregates in soils, Journal of Soil Science, 33, 141-163.
[42] Topp, G.C., Reynolds, W.D. and Carter, M.R. (1997). Physical attributes of soil quality, In: Gregorich, E.G. and M.R. Carter (eds), Soil Quality for Crop Production and Ecosystem Health, PP. 81-114, Elsevier Science, Amesterdam, The Netherlands.
[43] Toy, T.J., Foster, G.R. and Renard, K.G. (2002). Soil erosion: processes, prediction, measurement and control, New York, NY: John Wiley & Sons.
[44] Truman, C.C., Bradford, J.M. and Ferris, J.E. (1990). Antecedent water content and rainfall energy influence on soil aggregate breakdown, Soil Science Society of American Journal, 54, 1385-1392.
[45] Valla, M., Kozák, J. and Ondráček, V. (2000). Vulnerability of aggregates separated from selected anthrosols developed on reclaimed dumpsites, Rostlinna Vyroba, 46, 563-568.
[46] Valmis, S., Dimoyiannis, D. and Danalatos, N.G. (2005). Assessing interrill erosion rate from soil aggregate instability index, rainfall intensity and slope angle on cultivated soils in central Greece, Soil and Tillage Research,80, 139-147.
[47] Unjer, P.W., Fulton, J.L. and Jones, O.R. (1990). Land-leveling effects on soil texture, organic matter content, and aggregate stability, Journal of Soil and Water Conservation, 412-415.
[48] Zhang, B. and Horn, R. (2001). Mechanisms of aggregate stabilization in Ultisols from subtropical China, Geoderma, 99(1-2), 123-145.
[49] Zhi-Hua, S., Feng-Ling, Yan., Lu, Li.,  Zhao-Xia, Li. and Chong-Fa, Cai. (2010). Interrill erosion from disturbed and undisturbed samples in relation to topsoil aggregate stability in red soils from subtropical China, Catena, 81, 240-248.