کاربرد روش آنتروپی حداکثر در مدل‌سازی پیش بینی پراکنش رویشگاه های گیاهی (مطالعۀ موردی: مراتع بخش خلجستان استان قم)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار دانشکده منابع طبیعی، دانشگاه زابل، زابل، ایران.

2 استاد دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران.

چکیده

پژوهش حاضر با هدف شناسایی مهمترین متغیرهای تأثیرگذار در پراکنش رویشگاه­های مورد مطالعه و تهیۀ نقشه پیش­بینی رویشگاه­ها با استفاده از روش آنتروپی حداکثر انجام شد. بدین منظور، بعد از تعیین واحدهای همگن نمونه­برداری با استفاده از نقشه رقومی ارتفاع و نقشۀ زمین­شناسی با مقیاس 1:25000، نمونه­برداری از پوشش گیاهی به روش تصادفی - سیستماتیک انجام شد. سطح قطعات نمونه با توجه به نوع گونه­های موجود به روش سطح حداقل بین 2 تا 25 متر مربع و تعداد آنها با توجه به تغییرات پوشش گیاهی و خصوصیات مورد­نظر برای اندازه­گیری، با استفاده از روش آماری 60 پلات تعیین شد. برای نمونه­برداری از خاک نیز در هر رویشگاه هشت پروفیل حفر و از دو عمق 30-0 و 80-30 سانتی­متری نمونه گرفته شد و خصوصیات مورد­نظر در آزمایشگاه مورد اندازه­گیری قرار گرفت. برای انجام مدل‌سازی به روش آنتروپی حداکثر، لایه­های مربوط به متغیرهای محیطی با بهره­گیری از روش زمین­آمار و سیستم اطلاعات جغرافیایی تهیه شد و مدلسازی پراکنش رویشگاه­ها با استفاده از نرم­افزار MaxEnt انجام شد. بعد از اجرای مدل، به­منظور ارزیابی دقّت طبقه­بندی مدل­ها و میزان تطابق نقشه­های واقعی و پیش­بینی  ضریب کاپا و آماره سطح زیر منحنی اندازه­گیری شد. بر اساس نتایج، دقّت طبقه­بندی مدل­ها در سطح قابل قبول قرار می­گیرد و متغیرهای ارتفاع از سطح دریا، جهت، شیب، آهک، سنگریزه عمق اول و دوم خاک و سیلت عمق اول و دوم بیشترین تأثیر را در پراکنش رویشگاه­های مورد مطالعه دارند. میزان تطابق بین نقشه­های نقشه­های پیش­بینی و واقعی برای رویشگاه Artemisia aucheri –Astragalus glaucacanthus، در سطح عالی (کاپای 91/0) و برای رویشگاه­های Amygdalus scoparia،  Scariola orientalis- Stipa barbata و Pteropyrum olivieri- Stipa barbata در سطح خیلی­خوب قرار می­گیرد (به‌ترتیب کاپای 8/0، 83/0 و 79/0). این نتایج نشان می­دهد که روش آنتروپی حداکثر یک روش زایا و تولیدی است و مدل­های حاصل از آن می­تواند به آسانی توسط متخصصین مورد تفسیر قرار گیرد که این ویژگی از نظر کاربردی بسیار حائز اهمیّت است.

کلیدواژه‌ها


[1] Abdollahi, J., Naderi, H., Mir jalili, M.R and Tabatabaei, M. A. (2013). The effect of some environmental factors on growth characteristics of Stipa barbata in the Nadooshan rangelands of Yazd. Scientific-Research Quarterly of Iranian rangelands and desert research, 20 (1), 130-144.

[2] Abella, S.R. and Covington, W.W. (2006). Vegetation environment relationships and ecological speciesgroups of an arizona Pinus ponderosa landscape, Plant Ecology, 185 (2), 225-268.

[3] Alberghina, O. (1978). The wild Almond, Amygdalus webii, of south west Sicily, Tecnicaagricola, 30(6), 385-393.

[4] Alvani nejad, S. (1999). Study of effective factors on Distribution  of Amygdalous. scoparia in two different regions of the Markazi Province. MSc thesis, University of Tarbiat Madras, 144 pages.

[5] Anderson, R. P., Lew, D. and Peterson, A. T. (2003). Evaluating predictive models of species distributions: criteria for selecting optimal models. Ecological Modelling, 162, 211–232.

[6] Arekhi, S., Heydari, M. and Pourbabaei, H. (2010). Vegetation-environmental relationships and ecological species groups of the Ilam oak forest landscape, Iran, Caspian Journal of Environmental Sciences, 8(2), 115-125.

[7] Ashcroft, M.B. (2006). A method for improving landscape scale temperature predictions and the implications for vegetation modeling. Ecological Modelling, 197, 394-404.

[8] Azarnivand, H., Jafari, M., Moghadam, M., Jalili, A. and Zare Chahouki, M. (2003). Effect of soil properties and elevation change on the distribution of two species of Artemisia, (Case study: rangeland of Vardavard, Garmsar and Semnan), Iranian Journal of Natural Resources, 56 (1-2), 93-100.

[9] Biglouei, M.H., Akbarzadeh, A. and Yousefi, K.( 2008). Effect of composted wood barks (CWBs) on some soil physical and hydraulic properties. International Journal of Applied Agricultural Research, 4(1), 1-14.

[10] Browicz, K. and Zohary, D. (1995). The genus Amygdalus L. (Rosaceae): species relationships, distribution and evolution under domestication.Gentic, Resourses and crop evolution, 43 (3), 229-247.

[11] Buehler, E.C. and Ungar, L. H. (2001). Maximum Entropy Methods for Biological Sequence Modeling. BIOKDD, 60-64.

[12] Carter, G.M., Stolen, E.D. and Breininger, D.R. ( 2006). Arapid approach to modeling species–habitatrelationships. Biological conservation. 127,  237 -244.

[13] Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20, 37–46.

[14] Denisov, V.P. (1982). Distribution and variability of the wild almonds of Azerbaidzhan.Byuleten-Vsesoyuznogo-ordena-Lenina-I-Ordena-Druzhby­Narodov- Nauchno-Issledovatel skogo. Instituta Rastenievodstva. Imeni-N-I-Vavilova, 126 ,9- 42.

[15] Enright, N.J., Miller, B.P. and Akhter, R. (2005). DesertVegetation and Vegetation-Environmentrelationships in Kirthar National Park, Sindh,Pakistan. Journal of Arid Environments, 61, 397-418.

[16] Farahani, A., Shahmoradi, A.E., Zare kia, S. and Aghir, S. (1999). Study of Stipa barbata Autecology in Tehran province, Quarterly of rangeland and desert research.15 (1), 86-94.

[17] Gorttappeh, A.H., Hasani, M.H. and Ranji, H. (2006). Recognition and ecological investigation of almond species (Amygdalus spp.) in west Azerbaijan province. IV international symposium on pistachios and almond. Acta Hort. (ISHS), 726, 253-258.

[18] Goudarzi, Gh. (1999). Final Report of the Research Project  of  Amygdalus Site demands in the Central Province. Research Institute of Forests and Rangelands, 91 Pages.

[19] Graham, C.H., Ferrier, S., Huettman, F., Moritz, C. and Peterson, A.T. (2004). New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol. Evol. 19 (9), 497–503.

[20] Guisan, A., and Thuiller, W. (2005). Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993–1009.

[21] Hirzel, A. and Guisan, A. (2002). Which is the optimalsampling strategy for habitat suitability modelling.Ecological Modelling 157, 331–41.

[22] Hosseini, S. Z., Kappas. M., Zare Chahouki. M. A., Gerold, G.,  Erasmi. S. and  Rafiei Emam, A. (2013). Modelling potential habitats for Artemisia sieberi and Artemisia aucheri in Poshtkouh area, central Iran using the maximum entropy model and geostatistics, Ecological Informatics 18, 61-68.

[23] Jafari Haghighi, M. (2003). Methods of soil analysis: sampling and Physical and chemical analysis with emphasis on the theoretical and practical importance. Tehran University Press, 236 pages.

[24] Jianbing, W.U, Boucher, A. and Zhang T. (2008). A SGeMS code for pattern simulation of continuous and categorical variables: FILTERSIM. Computers &Geosciences, 4(12), 1863-1876.

[25] Khajeddin, S.J. and Yeganeh, H. (2007). Comprehensive Project of no hunting Karkas areas.
Section of the vegetation and rangeland. The Environmental Protection Agency and Department of Natural Resources of Esfahan industrial University.

[26] Kumar, S. and Stohlgren, T.J. (2009). Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia, Journal of Ecology and Natural Environment. 1(4), 94-98.

[27] Maltez-Mouro, S., Garcia, L.V.,  Maranon, T. and Freitas, H. (2005). The combined role of topography andoverstory tree composition in promoting edaphic and floristic variation in a Mediterranean forest, Ecological Research, 20(6), 668-677.

[28] Mohtashamnia, S., Zahedi, Gh. and Arzani, H.(2011). Multivariate Analysis of Rangeland Vegetation in Relation to Edaphical and Physiographical Factors. Procedia Environmental Sciences, 7, 305–310.

[29] Monserud, R. A. and Leemans, R. (1992). Comparing global vegetation maps with the Kappa statistic. Ecol. Modelling 62, 275–293.

[30] Munishi,P.K.T., Temu, R.P.C. and Soka, G. (2011). Plant communities and tree species associations in aMiombo ecosystem in the Lake Rukwa basin, Southern Tanzania: Implications for conservation. Journal ofEcology and the Natural Environment. 3(2), 63-71.

[31] Muslemi, M. R. (1997). Evaluation of soil and vegetation  relationships using Ordination method In the Kolah'ghazy National Park, MSc Thesis, University of Isfahan, 137 pages.

[32] Negga, H. E. (2007). Predictive Modelling of Amphibian Distribution Using Ecological Survey Data: a case study of Central Portugal, Master thesis, International Institute for Geo-Information Science and Earth Observation, Enschede, The Netherlands.

[33] Pearson, R. G. (2007). Species distribution modeling conservation educators and practitioners. Synthesis. New York: American Museum of Natural History.

[34] Phillips, S. J., Anderson. R. P. and Schapire, R. E. (2006). Maximum entropy modeling of speciesgeographic distributions. Ecological Modelling, 190, 231–259.

[35] Phillips, S.J., Dudık, M. and Schapire, R.E. (2004). A maximum entropy approach to species distribution modeling. In: Proceedings of the 21st International Conference on Machine Learning,ACMPress, New York, 655–662.

 [36] Piri sahragard, H. (2014). Evaluation of statistical models efficiency to predict the distribution of plant Species, (Case study: Qum Province Rangelands), PhD thesis of range management, Faculty of Natural Resources, University of Tehran, 157 pages.

 [37] Piri sahragard, H., Zare Chahouki M.A. and H. Azarnivand.(2014). Modelling of plant species distribution in the Hoze sultan west rangelands of by Logistic regression analysis. Journal of range management of Gorgan university.1 (1): 15-25.

 [38] Piri sahragard, H. and Zare Chahouki, M.A. (2015). An evaluation of predictive habitat models performance of plant species in Hoze soltan rangelands of Qom province. Ecological Modelling, 309-310: 64-71.

 [39] Salarian, E., Metaji, A. and Iranmanesh, Y. (1999). Study of habitat requirement of Amygdalus scoparia Species In the Zagros Forests: Case study of Kareh bas habitat of Chahr mahal and bakhtiari province. Quarterly Scientific - Research of Iranian Forest and Populus Research, 4 (16), 528- 542.

[40] Sweet, J.A. (1988). Measuring the accuracy of a diagnostic systems. Science 240, 1285-1293.

[41] Tarkesh, M. and G. Jetshcke. (2012). Comparison of six correlative models in predictive vegetation mapping on a local scale, Environmental and Ecological statistics, DOI: 10. 1007/10651-012-0194-3.

[42] Tavakoli Nekoo, H., Poormeydani, A., Adnani, S. M. and Sagheb talebi, Kh. 2011. Habitat survey of Amygdalus scoparia Spach in Qom province to achieve the main ecological factors in their emergence. Quarterly Scientific - Research of Iranian Forest and Poplar Research, 19 (4), 523-542.

[43] Tibshirani, R. (1996). Bias variance and prediction error for classification rules. Technical report, Univ. of Toronto.

[44] Verbyla, D.L. and Litvaitis, J.A. (1989). Resampling methods for evaluation of classificatioaccuracy of wildlife habitat models. Environmental Management 13, 783-787.

[45] Williams, P. M. (1995). Bayesian regularization and pruning using aLaplace prior. Neural Computation, 7, 117–143.

[46] Xue-Qing Yang, S.P.S. Kushwaha, S. Saran, and Jianchu Xu, P.S. R. (2013). Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecological Engineering, 51, 83-87.

[47] Zare Chahouki, M. A., Azarnivand, H., Jafari , M. and Tavili, A. (2010). Multivariate Statistical Methods as a Tool for Model Based Prediction of Vegetation Types. Russian Journal of Ecology, 41(1), 84–94.

[48] Zare Chahouki, M. A., Khalasi Ahvazi, L. and Azarnivand, H. (2012). Comparison of three modelingapproaches for predicting plant species distribution in mountainous scrubvegetation (Semnan rangelands, Iran), POLISH JOURNAL OF ECOLOGY, 60 (2), 105-117.

[49] Zare Chahouki, M. A. and Khalasi Ahvazi, L. (2012). Predicting potential distributions of Zygophyllum eurypterum by three modeling techniques (ENFA ANN and logistic in North East of Semnan Iran, Range management and Agroforestry, 2(33): 68-82.

 [50] Zare Chahouki, M.A., Piri Sahragard, H. and Azarnivand, H. (2014). Habitat distribution modeling of plant species in the Hoze Sultan rangelands of Qom with Maximum Entropy method. Journal of range management. 7 (3), 212-221.