منشأیابی رسوبات معلق و برآورد عدم قطعیت آن (مطالعه موردی: حوضه زیدشت-فشندک طالقان)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار دانشکده منابع طبیعی، دانشگاه گنبد کاووس، ایران.

2 استاد دانشکده منابع طبیعی، دانشگاه تهران، ایران.

3 استاد دانشکده ریاضی، آمار و علوم کامپیوتر، دانشگاه تهران، ایران.

4 دانشیار دانشکده منابع طبیعی، دانشگاه تهران، ایران.

چکیده

چکیده

به منظور اجرای عملیات حفاظتی و مدیریت در حوزه آبخیز نیاز است تا سهم منابع مختلف تولید رسوب تعیین شود. طی سال­های گذشته روش­های منشأیابی در تعیین سهم منابع مختلف رسوب بطور گسترده ای مورد استفاده قرار گرفته­اند. با توجه به تعداد کم نمونه­های برداشتی از مناطق منشأ و همچنین وجود جواب­های مختلف در نتیجه بیش­برازشی، سهم منابع به دست آمده، دارای عدم قطعیت­هایی است که لازم است مورد بررسی قرار گیرد. بدین منظور در این تحقیق با استفاده از روش­های مونت کارلو و گلو (GLUE) اقدام به تعیین عدم قطعیت جواب­های به دست آمده با استفاده از روش ترکیبی چند متغیره در زیرحوضه زیدشت-فشندک طالقان گردید. بدین ترتیب که پس از برداشت نمونه­های رسوب و منابع، مقادیر 54 عنصر ژئوشیمیایی و 3 عنصر آلی تعیین گردید. سپس با استفاده از آماره H کروسکال والیس و تحلیل تشخیص چند متغیره، ترکیب بهینه متشکل از 17 عنصر تعیین، و با استفاده از مدل ترکیبی چند متغیره، سهم منابع تعیین شد. نتایج به دست آمده در منطقه نشان داد که سهم منابع زیرسطحی نسبت به منابع سطحی ( فرسیش سطحی و شیاری) بیشتر بوده و اختلاف بین حد بالا و پایین به دست آمده برای منابع مختلف، بالا بوده که نشان‎دهنده عدم قطعیت بالای این روش است.

کلیدواژه‌ها


[1].   Beven, K. and Binley, A.M. (1992). The future of distributed models, model calibration and uncertainty predictions. Hydrological Processes, 6(3), 279-298.
[2].   Collins, A.L., Walling, D.E. and Leeks, G.J.L. (1997). Source type ascription for fluvial suspended sediment based on a quantitative composite fingerprinting technique. Catena, 29(1), 1–27.
[3].   Collins, A.L. and Walling, D.E. (2004). Documenting catchment suspended sediment sources: problems, approaches and prospects. Progress in Physical Geography, 28(2), 159–196.
[4].   Collins, A.L., Walling, D.E., Webb, L. and King, P. (2010). Apportioning catchment scale sediment sources using a modified composite fingerprinting technique incorporating property weightings and prior information. Geoderma, 155(3-4), pp. 249– 261.
[5].   Collins, A.L., Zhang, Y., McChesney, D., Walling, D.E., Haley, S.M. and Smith, P. (2012). Sediment source tracing in a lowland agricultural catchment in southern England using a modified procedure combining statistical analysis and numerical modeling.Science of the Total Environment, 414, PP. 301 – 317.
[6].   Foster, I.D.L. and Lees, J.A. (2000). Tracers in geomorphology: theory and applications in tracing fine particulate sediments. In: Foster, I.D.L. (Ed.), Tracers in geomorphology. Wiley, Chichester, UK, pp. 3–20.
[7].   Franks, S.W. and Rowan, J.S. (2000). Multi-parameter fingerprinting of sediment sources: uncertainty estimation and tracer selection. In: Bentley, L.R., Brebbia, C.A., Gray, W. G., Pinder, G.F., Sykes, J.F. (Eds.), Computational Methods in Water Resources. alkema, Rotterdam, pp. 1067–1074.
[8].   Hakimkhani, Sh., Ahmadi, H. and Ghayoumian, J. (2009). Determining Erosion Types Contributions to the Sediment Yield Using Sediment Fingerprinting Method (Case study: Margan watershed, Makoo). Soil and Water knowledge journal, 19(1), pp. 13–27. (In Persian).
[9].   Krause, A.K., Franks, S.W., Kalma, J.D., Loughran, R.J. and Rowan, J.S. (2003). Multi-parameter fingerprinting of sediment deposition in a small gullied catchment in SE Australia.Catena, 53(4), 327–348.
[10]. Martinez-Carreras, N., Udelhoven, T., Krein, A., Gallart, F., Iffly, J.F., Ziebel, J., Hoffmann, L., Pfister, L. and Walling, D.E. (2010). The use of sediment colour measured by diffuse reflectance spectrometry to determine sediment sources: Application to the Attert River catchment (Luxembourg). Journal of Hydrology, 382(1-4), 49–63.
[11]. Motha, J.A., Wallbrink, P.J., Hairsine, P.B. and Grayson, R.B. (2004). Unsealed roads as suspended sediment sources in an agricultural catchment in south-eastern Australia. Journal of Hydrology, 286 (1-4), 1–18.
[12]. Phillips, J.M., Russell, M.A. and Walling, D.E. (2000). Time-integrating sampling of fluvial suspended sediment: a simple methodology for small catchments. Hydrological Processes, 14(14), 2589– 2602.
[13]. Small, I.S., Rowan, J.S. and Franks, S.W. (2002). Quantitative sediment fingerprinting using a Bayesian uncertainty estimation framework. In: Dyer, F.J., Thoms, M.C., Olley, J.M. (Eds.), The structure, function and management implications of fluvial sedimentary systems. International Association of Hydrological Sciences Publication No. 276. IAHS Press, Wallingford, UK, pp. 443–450.
[14]. Rowan, J.S., Goodwill, P. and Franks, S.W. (2000). Uncertainty estimation in fingerprinting suspended sediment sources. In: Foster, I.D.L. (Ed.), Tracers in Geomorphology. Wiley, Chichester, UK, pp. 279–290.
[15]. Walling, D.E., Woodward, J.C. and Nicholas, A.P. (1993). A multi-parameter approach to fingerprinting suspended sediment sources. In: Peters, N.E., Hoehn, E., Leibundgut, Ch., Tase, N., Walling, D.E. (Eds.),
Tracers in Hydrology
. International Association of Hydrological Sciences Publication No. 215. IAHS Press, Wallingford, UK, pp. 329–337.