نشریه علمی - پژوهشی مرتع و آبخیزداری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار دانشکده منابع طبیعی، دانشگاه کشاورزی و منابع طبیعی رامین خوزستان، ایران.

2 استاد دانشکده منابع طبیعی، دانشگاه تهران، ایران.

3 استاد دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران، ایران.

4 استادیار دانشکده منابع طبیعی، دانشگاه تهران، ایران.

چکیده

هدایت هیدرولیکی یکی از مهم‌ترین خصوصیات هیدرولیکی است که حرکت آب در محیط متخلخل را کنترل می‌کند. ازاین‌رو برآورد دقیق آن در ارزیابی میزان تبادل آب بین جریان‌های سطحی و زیرزمینی از اهمیت فراوانی برخوردار است. در این مطالعه از 12 رابطه تجربی مبتنی بر آنالیز اندازه ذرات و 4 معادله نفوذ به‌منظور برآورد هدایت هیدرولیکی 3 نوع رسوب در عرصه پخش سیلاب جارمه در استان خوزستان استفاده شد و نتایج حاصله با هدایت هیدرولیکی اندازه‌گیری شده توسط آزمایش استوانه‌های مضاعف مقایسه و ارزیابی شدند. نتایج به‌دست‌آمده از روابط تجربی نشان داد که در 9 رابطه بیش‌برآورد یا کم‌برآورد مشاهده می‌شود و 3 رابطه نزدیک به مقادیر اندازه‌گیری شده، برآورد کرده‌اند. رابطه هیزن بیشترین بیش‌برآورد، رابطه اسلیچتر بیشترین کم‌برآورد و رابطه شفرد بهترین برآورد را داشته است. درمجموع، روابط تجربی به‌منظور قابل استفاده بودن نیاز دارند تا ضرایب C در آن‌ها اصلاح شود. نتایج به‌دست‌آمده از معادلات نفوذ نشان می‌دهد که هر 4 معادله نفوذ، برآورد قابل قبولی از هدایت هیدرولیکی داشته‌اند و اختلاف معنی‌داری بین آن‌ها مشاهده نمی‌شود. در بین این معادلات، کاستیاکوف و گرین-امپت بهترین معادلات بوده‌اند.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluating of Efficiency of Empirical Formulae Based on Grain-Size and Infiltration Equations for Estimating Sediment Hydraulic Conductivity (Case Study: Jarmeh Flood Spreading System, Khuzestan Province)

نویسندگان [English]

  • mohammad moazami 1
  • Sadat Feiznia 2
  • Majid Khayyat Kholghi 3
  • Arash Malekian 4

1 assistant professor, nature reclamation department/ khuzestan agriculture & natural resources university

چکیده [English]

Hydraulic conductivity is an important parameter for controling water flow through porous media. Hence, accurate estimation of this parameter is important for evaluating flow exchange between surface water and groundwater. In this study, 12 empirical formulae based on grain-size and 4 infiltration equations were used for estimating hydraulic conductivity on 3 sites in Jarmeh flood spreading system, Khuzestan Province. Results were evaluated using measured hydraulic conductivity by double rings infiltrometer. The results of the empirical formulae showed that 9 formulae were overestimated or underestimated and 3 formulae were close to measured values. Hazen formula gave the largest overestimation and Slitcher formula gave the largest underestimation and Shepherd formula is the best one. Generally, empirical formulae applicability requires the calibration of C coefficients. The results of the infiltration equations showed that all of 4 equations estimated hydraulic conductivity appropriately and there are no significant differences between them. Among the equations, Kastiakov and Green-Ampt were the best.

کلیدواژه‌ها [English]

  • Hydraulic conductivity
  • Empirical formulae
  • Infiltration equations
  • Double Rings
  • Khuzestan
[1]      Beyer, W. (1964). To determine the water permeability of sands and gravels from the particle distribution curve. Water Management, 14, 165-168 (in German).
[2]      Boadu, F.K. (2000). Hydraulic conductivity of soils from grain-size distribution: new models. J. Geotech. Geoenviron. Eng., 126 (8), 739-746.
[3]      Carman, P.C. (1937). Fluid Flow through Granular Beds. Trans. Inst. Chem. Eng., 15, 1-50.
[4]      Chapuis, R.P. (2012). Predicting the saturated hydraulic conductivity of soils: a review.Bull. Eng. Geol. Environ., 71, 401–434.
[5]      Cheong, J., Hamm, S., Kim, H., Ko, E., Yang, K. and Lee, J. (2008). Estimating hydraulic conductivity using grain-size analyses, aquifer tests, and numerical modeling in a riverside alluvial system in South Korea. Hydrogeology Journal, 16, 1129 –1143.
[6]      Chua, L.H.C., Lo, E.Y.M., Freybery, D.L., Shuy, E.B., Lim, T.T., Tan, S.K. and Ngonidzashe, M. (2007). Hydrostratigraphy and geochemistry at a coastal sandhill in Singapore. Hydrogeology Journal, 15(8), 1591–1604.
[7]      Fodor, N., Sándor, R., Orfanus, T., Lichner, L. and Rajkai, K. (2011). Evaluation method dependency of measured saturated hydraulic conductivity. Geoderma, 165, 60 – 68.
[8]      Green, W.H. and Ampt, G.A. (1911). Studies in soil physics: I.The flow of air and water through soils. Journal of Agriculture science, 4, 1-24.
[9]      Hazen, A. (1892). Some physical properties of sands and gravels with special reverence to their use infiltration. In: 24th annual report, Massachusetts State Board of Health, pp. 539–556.
[10]  Hillel, D. (1998). Environmental soil physics, Academic press, Sand Diego, CA, 486p.
[11]  Horton, R.E. (1940). An approach towards a physical interpretation of infiltration capacity. Soil Sci. Soc. Am. Proc., 5, 399 – 417.
[12]  Kostiakov, A.N. (1932). On the dynamics of the coefficients of water per-colation in soils and on the necessity of studying it from a dynamic point of view for purposes of amelioration. Trans. Com. Int. Soc. Soil Sci., 6, 17–21.
[13]  Kozeny, J. (1927). In line via capillary water in the ground. Proceedings of Acad. Vienna.Math. Natural Sciences, 136, 271-306 (In German). 
[14]  Landon, M.K., Rus, D.L. and Harvey, F.E. (2001). Comparison of instream methods for measuring hydraulic conductivity in sandy streambeds. Ground Water, 39(6), 870–885.
[15]  Loudon, A.G. (1952). The computation of hydraulic conductivity from simple soil test. Geotechnique, 3(3), 165–183.
[16]  Mohamadi, M.H. and Rafahi, H.G. (2005). Estimating of parameters of infiltration equations by using soil physical properties. Journal of Iranian Agricultural Science, 36(6), 1391-1398 (In Persian).
[17]  Nakhaei, M. (2005). Estimating the Saturated Hydraulic Conductivity of Granular Material, Using Artificial Neural Network, Based on Grain Size Distribution Curve. Journal of Sciences, Islamic Republic of Iran, 16(1), 55-62.
[18]  Odong, J. (2007). Evaluation of empirical formulae for determination of hydraulic conductivity based on grain-size analysis. Journal of American Science, 3(3), 54–60.
[19]  Phillip, J.R. (1957). The theory of infiltration: 1.Infiltration equation and its solution. Soil Science, 83, 345- 357.
[20]  Pliakas, F. and Petalas, C. (2011). Determination of Hydraulic Conductivity of Unconsolidated River Alluvium from Permeameter Tests, Empirical Formulas and Statistical Parameters Effect Analysis. Water Resour. Management. 25(11), 2877–2899.
[21]  Ronayne, M., Houghton, T. and Stednick, J. (2012). Field characterization of hydraulic conductivity in a heterogeneous alpine glacial till. Journal of Hydrology, 458–459, 103–109.
[22]  Sadeghzadeh, K., Shirmohammadi, A., Montas, H. and Felton, G. (2007). Evaluation of infiltration models in contaminated landscape. Journal of Environmental Science and Health (Part A), 42, 983–988.
[23]  Shepherd, R.G. (1989). Correlations of hydraulic conductivity and grain size. Ground Water, 27(5), 633–638.
[24]  Slichter, C.S. (1899). Theoretical investigation of the motion of ground waters. U.S. Geol. Surv., 19th Ann. Rept., 2, 295–384.
[25]  Song, J., Chen, X., Cheng, C., Wang, D., Lackey, S. and Xu, Z. (2009). Feasibility of grain-size analysis methods for determination of vertical hydraulic conductivity of streambeds. Journal of Hydrology, 375, 428–437.
[26]  Takounjou, A.F., Fantong, W., Ngoupayou, J.N. and Nkamdjou, L.S. (2012). Comparative Analysis for Estimating Hydraulic Conductivity Values to Improve the Estimation of Groundwater Recharge in Yaoundé-Cameroon. British Journal of Environment & Climate Change, 2(4), 391-409.
[27]  Terzaghi, K. and Peck, R.B. (1964). Soil mechanics in engineering practice, Wiley, New York, 688p.
[28]  Vukovic, M. and Soro, A. (1992). Determination of hydraulic conductivity of porous media from grain-size composition, Water Resources Publications, Colorado, 83p.