تهیۀ نقشۀ حساسیت به وقوع زمین لغزش با استفاده از مدل‌های وزن شواهد (WofE)، نسبت فراوانی (FR) و دمپستر– شیفر (DSH) (مطالعۀ موردی: محدودۀ ساری-کیاسر)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناس ارشد آبخیزداری، دانشکدۀ منابع‌طبیعی، دانشگاه علوم کشاورزی و منابع‌طبیعی ساری

2 استاد گروه آبخیزداری، دانشکدۀ منابع‌طبیعی، دانشگاه علوم کشاورزی و منابع‌طبیعی ساری

3 کارشناس ارشد هیدروژئولوژی، دانشکدۀ علوم پایه، دانشگاه شیراز

چکیده

زمین لغزش به عنوان یکی از مخاطرات طبیعی مهم هر ساله موجب خسارات مالی، جانی و تخریب منابع­طبیعی می­شود. هدف این تحقیق مقایسۀ سه مدل وزن شواهد، نسبت فراوانی و دمپستر-شیفر در حوضۀ آبخیز ساری-کیاسر است. در ابتدا، داده­های 105 زمین لغزش رخ داده در منطقه بر اساس عکس­های هوایی 1:25000 و مطالعات میدانی جمع­آوری گردیده و این فهرست به دو قسمت 75 درصد برای پهنه­بندی و 25 درصد برای اعتبارسنجی تقسیم شد. سپس، 17 پارامتر مؤثر در زمین لغزش شامل فاکتورهای زمین شناسی، ژئومورفولوژیکی، هیدرولوژیکی و انسانزاد فراهم گردید. مهم ترین فاکتورها در رخداد زمین لغزش در منطقۀ بارش، شیب و پوشش گیاهی هستند. نتایج اعتبارسنجی به صورت درصد مساحت زیر منحنی تجمعی (AUC)نشان می­دهد که نرخ موفقیت مدل­های وزن شواهد و نسبت فراوانی و دمپستر-شیفر به ترتیب 05/92  و05/92 و 31/91 درصد و نرخ پیش­بینی به ترتیب 72/92  و 73/92 و 44/85 درصد است. نتایج نشان می­دهد که از نظر دقت مدل به­کار رفته براساس نرخ موفقیت سه مدل در گروه عالی (9/ - 1) قرار می­گیرند. همچنین نرخ موفقیت بر اساس نرخ پیش­بینی مدل­های وزن شواهد و نسبت فراوانی در گروه عالی (9/ - 1) و مدل دمپستر-شیفر در گروه خوب (8/0-9/0) قرار می­گیرند. نتایج به­دست آمده بیانگر این است که مدل­های وزن شواهد و نسبت فراوانی مدل­های کارامدتری نسبت به مدل دمپستر-شیفر در منطقه هستند

کلیدواژه‌ها


[1] Andarz, Z. (2009). Check the status of landslide in the forest road (Case Study: Emre Series 1 Wood and paper industries company, Mazandaran, Iran), Third International Conference on crisis integrated management in unexpected disasters, Tehran, Promote Quality Company. COI: INDM03_006.
[2] Azimpour  moghaddam, V. and Vahabzadeh, GH. (2015). Landslide hazard zonation using Dempster- Shaffer method (Case study: Part of the babolrood watershed), The third National Conference on Environment and Agricultural Research Iran, Hamedan, Permanent Secretariat of the Conference, Faculty of Mofateh martyr. COI: NCER03_151
[3]. Aleotti, P. and Chowdhury, R. (1999). Landslide hazard assessment: summary review and new perspectives. Eng. Geol. 58:21–44.­
[4]. Alexander, D. E. (1995). A survey of the field of natural hazards and disaster studies. Springer.
[5]. Ayalew, L. and Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakud-Yahiko Mountains, Central Japon. Geomorphology 65:15–31.
[6]. Binaghi, E. Luzi, L. Madella, P. Pergalani, F. and Rampini, A. (1998). Slope instability zonation: a comparison between certainty factor and fuzzy Dempster-Shafer approaches. Nat. Hazards 17(1):77–97.
[7]. Baeza, C. and Corominas, J. (2001). Assessment of shallow landslide susceptibility by means of multivariate statistical techniques. Earth surf. Proc. Land 26:1251–1263.
[8]. Crosby, D. A. (2006). The effect of DEM resolution on the computation of hydrologically significant topographic attributes. M.S. Thesis Arts, Department of Geography, College of Arts and Sciences, University of South Florida.
[9]. Devkota, C. K. Regmi, D. A. Pourghasemi, R. H. Yohida, K. Pradham, B. Ryu, C. L. Dhital, R. M. and Althuwaynee, F. O. (2012). Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya. Nat. Hazards.
[10]. Farahani, A. (2002). Natural slopes instability hazard assessment in Rudbar area by using fazzy logic, M.Sc thesis, Factualy of science geology, Tarbiat Moallem University.
[11]. Glade, T. (1998). Establishing the frequency and magnitude of landslide-triggering rainstorm events in New Zealand. Env. Geo. 35(2)160–174.)
[12]. Guzzetti, F. Carrara, A. Cardinali, M. and Reichenbach, P. (1999). Landslide hazard evalution: A review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216.
[13] Hosseini, r. and hojjati, m. (2010). The consequences of mass movement and landslide in woodland road in Mazandaran province. Seventh National Conference on watershed management science and engineering.
[14]. Lee, S. (2004). Application of likelihood ratio and logestic regression models to landslide susceptibility mapping using GIS. Environ. Manag. 34:223–232.
[15]. Lee, S. and Pradham, B. (2007). Landslide hazard mapping at Selangor Malaysia using frequency ratio and logestic regression models. Landslides 4:33–41.
[16] Lutfi, R., Hosseini, GH., Lotfalian, m. and Klarstaqy, GH. (2007). the study of the phenomenon of landslide around the forest roads based on participation in the production of sediment (Case study: Pahneh Kolla wood and paper industries, Tajan, Mazandaran, Iran), Fourth National Conference on of Iran's watershed management science and engineering Karaj, Tehran University Faculty of Natural Resources.
[17]. Moore, I. D. Grayson, R. B. and Ladson, A.R. (1991). Digital terrain modeling: a review of hydrological, geomorphological, and biological applications. Hydrol Process vol. 5, pp: 3–30.
[18]. Pourghasemi, H. R. Moradi, H. R. and Fatemi Aghda, S. M. (2013). Landslide susceptibility mapping by binary logistic regression, Analytical hierarchy process, and statistical index models and assessment of their performances. Nat. Hazards.
[19]. Pradham, B. (2010). Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. J. Indian Soc. Remote Senns. 38:301–320.
[20] Rosenfeld, C. L. (1994). The geomorphological dimensions of natural disasters. Geomorphology 10(1):27–36.
[21]. Schuster, R. L. and Fleming, R. W. (1986). Economic losses and fatalities due to landslides. National Emergency Training Center.
[22]. Soeters, R. and Van Westen, C. J. (1996). Landslides: Investigation and mitigation. Chapter 8-slope instability recognition, analysis, and zonation. Transportation Research Board Special Report (247).
[23]. Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Sciences 240(4857):1285–1293.
[24] Solaimani, k., Gholami, M. (2014). Land slide occurrence sensitivity maps with the use of the frequency ratio and Gamma Fuzzy models in the South Caspian (Case study: road sari-Kiasar), National Conference on sustainable development space on the banks of the Caspian Sea, Mazandaran, University of Mazandaran, Faculty of Humanities and social sciences. COI: SSDCSC01_051
[25]. Van Westen, C. J. (1997). Statistical landslide hazard analysis. In: Application guide, ILWIS 2.1 for Windows. ITC, Enscheda, The Netherlands, pp. 73–84.
[26] Vakhshuri, S. (2013). Evaluate the potential landslide in geographic information system (A case study of Gorgan drainage basin). Master's Thesis Geology, Faculty of Science, University of Shiraz.