تأثیر ساختارها و ورودی‌های مختلف شبکه‌های عصبی مصنوعی در تخمین دبی روزانۀ حوزۀ آبخیز معرّف امامه

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دکتری علوم و مهندسی آبخیزداری

2 استاد گروه آموزش، برنامه‌ریزی و مدیریت محیط زیست، دانشکدۀ محیط زیست، دانشگاه تهران

3 دانشیار گروه احیا مناطق خشک و کوهستانی، دانشکده منابع طبیعی، دانشگاه تهران

4 مربی دانشکاه فنی و حرافه ای، یزد

چکیده

یکی از مهم­ترین محاسبات هیدرولوژیک در یک اکوسیستم، تعیین ارتباط بین بارش و رواناب است. به طوری ­که بررسی فرایندهای به­وقوع پیوسته در آن و برآورد خروجی­های مهّم حوزه از قبیل سیلاب و رسوب از مهّم­ترین هدف­های یک پروژۀ آبخیزداری تلقی می­شود. به دلیل ویژگی­های متغیر زمانی و مکانی وقایع در چرخۀ آبی، روابط غیر خطی و عدم قطعیت، هیچ کدام یک از مدل­های آماری و مفهومی نتوانسته به­عنوان یک مدل برتر و توانا کارگشا باشد. اما امروزه استفاده از شبکه­های غیرخطی به­عنوان سامانه­های هوشمند در پیش­بینی چنین پدیده­های پیچیده و حل بسیاری از مشکلات اکوهیدرولوژی می­تواند مفید و مؤثر باشد. به این منظور از داده­های روزانۀ بارندگی، دما، تبخیر و تعرق، رطوبت نسبی و همچنین دبی در مقیاس روزانه و در دورۀ زمانی مشترک 42 ساله و بررسی 62 ساختار پیشنهادی مختلف در حوزۀ آبخیز معرّف امامه استفاده شد. در این راستا و به منظور مقایسه از شبکه­های عصبی پرسپترون چند­لایه و تابع پایۀ شعاعی استفاده گردید. نتایج نشان داد که از بین بیش از 6000 مدل موجود در تخمین دبی رودخانه، مدل 54 با ساختار 1-8-9-8 و ورودی­های دما، رطوبت نسبی، بارندگی و تأخیر بارندگی و دبی تا دو روز بوده و با روش پرسپترون چند­لایه دارای بهترین عملکرد بوده است. میزان خطای مدل مذکور برابر با 03/0، 18/0 و 04/0 در مرحلۀ مدلسازی و آموزش و 02/0، 14/0 و 02/0 در مرحلۀ آزمایش برای معیارهای ارزیابی به ترتیب شامل میانگین مربعات خطا (MSE)، مجذور میانگین مربعات خطا (RMSE)، میانگین مطلق خطا (MAE) بوده است.

کلیدواژه‌ها