[1] Abedi, R. and Bonyad, A.E. (2015). Estimation and Mapping Forest Attributes Using" k Nearest Neighbor" Method on IRS-P6 LISS III Satellite Image Data. Ecologia Balkanica, 7(1).
[2] Amiri, F. and Tabatabaie, T. (2009). Operational Monitoring of Vegetative Cover by Remote Sensing in Semi-arid Lands of Iran. 7th FIG Regional Conference, Advanced Technology for Cadastre and Land Management: 1-18.
[3] Asgarian, A., Soffianian, A. and Pourmanafi, S. (2016). Crop type mapping in a highly fragmented and heterogeneous agricultural landscape: A case of central Iran using multi-temporal Landsat 8 imagery. Computers and Electronics in Agriculture, 127, 531-540.
[4] Baret, F. and Guyot, G. (1991). Potentials and limits of vegetation indices for LAI and APAR assessment. Remote sensing of environment, 35(2-3), 161-173.
[5] Batista, P.V.G., Silva, M.L.N., Silva, B.P.C., Curi, N., Bueno, I.T., Júnior, F.W.A., Davies, J. and Quinton, J. (2017). Modelling spatially distributed soil losses and sediment yield in the upper Grande River Basin-Brazil. CATENA, 157, 139-150.
[6] Beven, K. and Kirkby, M.J. (1979). A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant. Hydrological Sciences Journal, 24(1), 43-69.
[7] Boyd, D.S., Foody, G.M., Curran, P., Lucas, R. and Honzak, M. (1996). An assessment of radiance in Landsat TM middle and thermal infrared wavebands for the detection of tropical forest regeneration. International journal of remote sensing, 17(2), 249-261.
[8] Braunisch, V., Coppes, J., Arlettaz, R., Suchant, R., Schmid, H. and Bollmann, K. (2013). Selecting from correlated climate variables: a major source of uncertainty for predicting species distributions under climate change. Ecography, 36(9), 971-983.
[9] Chahuki, M.A.Z. and Behematta, M.R. (2015). Principles of Statistics in Natural Resources Science Tehran University, Publishing & Printing Institute.
[10] Clevers, J. (1991). Application of the WDVI in estimating LAI at the generative stage of barley. ISPRS journal of photogrammetry and remote sensing, 46(1), 37-47.
[11] Crippen, R. and Blom, R. (1999). Unveiling the lithology of vegetated terrains in remotely sensed imagery. Photogrammetric Engineering and Remote Sensing, 67, 935–943.
[12] Crookston, N.L. and Finley, A.O. (2008). yaImpute: an R package for kNN imputation.
[13] Curran, P. and Williamson, H. (1987). GLAI estimation using measurements of red, near infrared, and middle infrared radiance. Photogrammetric engineering and remote sensing (USA), 53, 181-186.
[14] Erencin, Z., Shresta, D. and Krol, I.B. (2000). C-factor mapping using remote sensing and GIS. A case study of Lom Sak/Lom Kao, Thailand. Enschede/Holland: Geographisches Institut der Justus-Liebig-Universität Giessen and International Institute for Aerospace Survey and Earth Sciences (ITC).
[15] ESRI, A. (2012). 10.1. Environmental Systems Research Institute, Redlands, CA.
[16] Fassnacht, F., Hartig, F., Latifi, H., Berger, C., Hernández, J., Corvalán, P. and Koch, B. (2014). Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote sensing of environment, 154, 102-114.
[17] Fleming, A.L., Wang, G. and McRoberts, R.E. (2015). Comparison of methods toward multi-scale forest carbon mapping and spatial uncertainty analysis: Combining national forest inventory plot data and Landsat TM images. European journal of forest research, 134(1), 125-137.
[18] Franco-Lopez, H., Ek, A.R. and Bauer, M.E. (2001). Estimation and mapping of forest stand density, volume, and cover type using the k-nearest neighbors method. Remote sensing of environment, 77(3), 251-274.
[19] Ganasri, B. and Ramesh, H. (2016). Assessment of soil erosion by RUSLE model using remote sensing and GIS-A case study of Nethravathi Basin. Geoscience Frontiers, 7(6), 953-961.
[20] Gitelson, A.A., Kaufman, Y.J. and Merzlyak, M.N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote sensing of environment, 58(3), 289-298.
[21] Gitelson, A.A., Vina, A., Ciganda, V., Rundquist, D.C. and Arkebauer, T.J. (2005). Remote estimation of canopy chlorophyll content in crops. Geophysical Research Letters, 32(8).
[22] Hossein, A., King, G. and Brouce, F. (1998). Application of Landsat TM satellite data to estimate production and vegetation cover. Natural Resources of Iran, 50(1), 3-21.
[23] Hosseini, S.S. and Ghorbani, M. (2012). Economic of soil erosion. Ferdowsi University of Mashhad press.
[24] Hosseini, Z., Khajeddin, S.J., Azarnivand, H., Farahpour, M. and Khalilpour, S.A. (2008). Cover Estimation and Mapping Rangelands Vegetation Cover Percentage Using ETM+Data Image Processing. Journal of Rangeland, 1(1), 79-90.
[25] Huete, A.R. (1988). A soil-adjusted vegetation index (SAVI). Remote sensing of environment, 25(3), 295-309.
[26] Jafari, R., Lewis, M. and Ostendorf, B. (2007). Evaluation of vegetation indices for assessing vegetation cover in southern arid lands in South Australia. The Rangeland Journal, 29(1), 39-49.
[27] Jin, S. and Sader, S.A. (2005). Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances. Remote sensing of environment, 94(3), 364-372.
[28] Justice, C.O., Vermote, E., Townshend, J.R., Defries, R., Roy, D.P., Hall, D.K., Salomonson, V.V., Privette, J.L., Riggs, G. and Strahler, A. (1998). The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Transactions on Geoscience and Remote Sensing, 36(4), 1228-1249.
[29] Karpilo Jr, R. and Toy, T. (2004). RUSLE C-FACTORS FOR SLOPE PROTECTION APPLICATIONS1. Proceedings America Society of Mining and Reclamation, 995-1013.
[30] Kauth, R.J. and Thomas, G. (1976). The tasselled cap--a graphic description of the spectral-temporal development of agricultural crops as seen by Landsat. Proceedings of the 2nd Annual Symposium on Machine Processing of Remotely sensed data held at Purdue University LARS Symposia, 41-51.
[31] Khorasan, D.D.o.N.R.a.W.i.N. (2016). The study of the comprehensive management plan for natural resources in Ernaveh Basin.
[32] Lal, R. (2001). Soil degradation by erosion. Land degradation & development, 12(6), 519-539.
[33] Mirshekari, Z., Sadeghinia, M., Kalantari, S. and Asadi, M. (2019). Application of Satellite Data and Data Mining Algorithms in Estimating Coverage Percent (Case study: Nadoushan Rangelands, Ardakan Plain, Yazd, Iran). Journal of Rangeland Science, 13(4), 632-644.
[34] O'neill, A. (1996). Satellite‐derived vegetation indices applied to semi‐arid shrublands in Australia. The Australian Geographer, 27(2), 185-199.
[35] Ohmann, J.L., Gregory, M.J. and Roberts, H.M. (2014). Scale considerations for integrating forest inventory plot data and satellite image data for regional forest mapping. Remote sensing of environment, 151, 3-15.
[36] Oldeman, L.R., Hakkeling, R. and Sombroek, W.G. (2017). World map of the status of human-induced soil degradation: an explanatory note. International Soil Reference and Information Centre.
[37] Pearson, R.L. and Miller, L.D. (1972). Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie. Remote Sensing of Environment, VIII, Pawnee National Grasslands, Colorado: 1357-1381.
[38] Purevdorj, T., Tateishi, R., Ishiyama, T. and Honda, Y. (1998). Relationships between percent vegetation cover and vegetation indices. International journal of remote sensing, 19(18), 3519-3535.
[39] Rahman, M.M. (2006). Tropical forest biomass estimation and mapping using k-nearest neighbour (knn) method. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 36, 860-865.
[40] Renard, K.G. (1997). Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE).
[41] Rikimaru, A., Roy, P. and Miyatake, S. (2002). Tropical forest cover density mapping. Tropical Ecology, 43(1), 39-47.
[42] Rondeaux, G., Steven, M. and Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote sensing of environment, 55(2), 95-107.
[43] Rouse Jr, J.W., Haas, R., Schell, J. and Deering, D. (1974). Monitoring vegetation systems in the Great Plains with ERTS. NASA SP-351.
[44] Saavedra, C. (2005). Estimating spatial patterns of soil erosion and deposition of the Andean region using geo-information techniques: a case study in Cochabamba, Bolivia.
[45] Saha, S.K. (2003). Water and Wind Induced Soil Erosion Assessment and Monitoring Using Remote Sensing and GIS. In: Satellite Remote Sensing and GIS Applications in Agricultural Meteorology. 315-330.
[46] Sarraf, M., Owaygen, M., Ruta, G. and Croitoru, L. (2005). Islamic Republic of Iran: Cost assessment of environmental degradation. Sector Note(32043-IRN).
[47] Scheuber, M. (2010). Potentials and limits of the k-nearest-neighbour method for regionalising sample-based data in forestry. European journal of forest research, 129(5), 825-832.
[48] Schmidt, H. and Karnieli, A. (2000). Remote sensing of the seasonal variability of vegetation in a semi-arid environment. Journal of arid environments, 45(1), 43-59.
[49] Senseman, G.M., Bagley, C.F. and Tweddale, S.A. (1996). Correlation of rangeland cover measures to satellite‐imagery‐derived vegetation indices. Geocarto International, 11(3), 29-38.
[50] SEPEHR, A. and Mottaghi, M. (2002). Using Vegetation Indices for Estimation of Canopy Cover Percentage of Rangeland Vegetation (In Protected Area of Jahan–Nama, Gorgan). Natural Resources of Iran, 55(2), 259-272.
[51] Souza, R., Rittner, L. and Lotufo, R. (2014). A comparison between k-Optimum Path Forest and k-Nearest Neighbors supervised classifiers. Pattern recognition letters, 39, 2-10.
[52] Sun, H., Wang, Q., Wang, G., Lin, H., Luo, P., Li, J., Zeng, S., Xu, X. and Ren, L. (2018). Optimizing kNN for Mapping Vegetation Cover of Arid and Semi-Arid Areas Using Landsat Images. Remote Sensing, 10(8), 1248.
[53] TEAM, R.C. (2010). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
[54] Tucker, C.J. (1980). A spectral method for determining the percentage of green herbage material in clipped samples. Remote sensing of environment, 9(2), 175-181.
[55] Van Remortel, R.D., Hamilton, M.E. and Hickey, R.J. (2001). Estimating the LS factor for RUSLE through iterative slope length processing of digital elevation data within Arclnfo grid. Cartography, 30(1), 27-35.
[56] Veihe, A. (2002). The spatial variability of erodibility and its relation to soil types: a study from northern Ghana. Geoderma, 106(1), 101-120.
[57] Wang, G., Zhang, M., Gertner, G.Z., Oyana, T., McRoberts, R.E. and Ge, H. (2011). Uncertainties of mapping aboveground forest carbon due to plot locations using national forest inventory plot and remotely sensed data. Scandinavian Journal of Forest Research, 26(4), 360-373.
[58] Wischmeier, W.H. and Smith, D.D. (1978). Predicting rainfall erosion losses-a guide to conservation planning. Department of Agriculture, Science and Education Administration.
[59] Yang, Y. and Shi, D. (1994). Study on soil erosion in the Three Gorge area of the Changjiang River, Southeast University Press, Nanjing (in Chinese).
[60] Zhou, P., Luukkanen, O., Tokola, T. and Nieminen, J. (2008). Effect of vegetation cover on soil erosion in a mountainous watershed. Catena, 75(3), 319-325.
[61] Zhou, P., Nieminen, J., Tokola, T., Luukkanen, O. and Oliver, T. (2006). Large scale soil erosion modeling for a mountainous watershed. WIT Transactions on Ecology and the Environment, 89, 13.