نشریه علمی - پژوهشی مرتع و آبخیزداری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموختۀ کارشناسی ارشد، دانشکدۀ محیط زیست و منابع طبیعی، دانشگاه صنعتی خاتم الانبیاء (ص) بهبهان، بهبهان، ایران.

2 استادیار گروه مهندسی خاک، دانشکدۀ کشاورزی و منابع طبیعی دانشگاه لرستان، لرستان، ایران.

3 استادیار دانشکدۀ محیط زیست و منابع طبیعی، دانشگاه صنعتی خاتم الانبیاء (ص) بهبهان، بهبهان، ایران.

4 کارشناس ارشد ادارۀ کل منابع طبیعی و آبخیزداری استان خوزستان، اهواز، ایران.

چکیده

یکی از روش­های مناسب جهت بررسی تأثیر عملیات حفاظت خاک و مدل‏سازی فرسایش آبی خاک، بررسی پایداری خاکدانه­ها و تغییرات مکانی آن است. تحقیق حاضر با هدف مدل‏سازی پایداری خاکدانه­ها و تغییرات مکانی آن‏ها در یک منطقه تحت عملیات درخت­کاری و کنتورفارو و منطقه­ای مشابه و مجاور آن به عنوان منطقۀ شاهد در منطقۀ چاه­ماری بهبهان در استان خوزستان انجام شد. تعداد 150 نمونه خاک از عمق 0تا 5 سانتی­متری برداشته شد و میانگین وزنی قطر خاکدانه­ها (MWD) به روش الک خشک (MWDd) و الک تر (MWDw) تعیین گردید. برای تهیۀ نقشۀ توزیع مکانی MWD از تکنیک­های نقشه­برداری رقومی‏خاک (DSM) استفاده گردید. برای‏این منظور، متغیرهای محیطی دارای ارتباط با MWD از تصویر سنجندۀ لندست 8 و مدل رقومی ‏ارتفاع (DEM) استخراج و به منظور برقراری ارتباط بین ‏این متغیرها و MWD از مدل­های شبکه‏های عصبی مصنوعی (ANN) و درخت رگرسیون (RT) استفاده گردید. نتایج نشان داد اقدامات کنترلی انجام شده در منطقه روی MWDd تأثیر معنی­دار ولی روی MWDw تأثیر معنی­داری نداشت. آنالیز همبستگی نشان داد بین پارامترهای استخراج شده از DEM با MWDw همبستگی معنی­داری وجود نداشت ولی بین برخی پارامترهای استخراج شده از DEM با MWDd همبستگی معنی­داری وجود داشت. همچنین همبستگی MWDd و MWDw با اکثر پارامترهای تصویر ماهواره­ای معنی­دار بود. کارآیی مدل­های ANN و RT در تخمین MWDw نسبتاً بالا و تا حدودی مشابه ولی در تخمین MWDd کارآیی ANN بالاتر از RT بود. به طور کلی نتایج نشان داد روش­های نقشه­برداری رقومی ‏رویکردی مناسب برای تخمین و پهنه­بندی MWD می­باشند.

کلیدواژه‌ها

عنوان مقاله [English]

Digital mapping of soil aggregate stability and the effectiveness of soil erosion control practices in Behbahan region

نویسندگان [English]

  • Manizheh Razavi Hosain Abad 1
  • Alireza Amirian Chekan 2
  • Mohammad Faraji 3
  • Jamal Mosavian 4

1 Faculty of Natural Resources and Environment, Khatam Al-Anbia University of Technology, Behbahan

2 Assistant Professor, Department of Soil Science Engineering, Faculty of Agriculture and Natural Resources, Lorestan University

3 Assistant Professor, Behbahan Khatam Alanbia University of Technology

4 Master of Science of the General Department of Natural Resources and Watershed Management of Khuzestan Province

چکیده [English]

Soil aggregate stability and its spatial distribution can be considered as a good indicator for assessing the results of measures conducted for mitigation soil erosion. This study was conducted in two adjacent sites in Chahmari region, Kuzestan province. At one site afforestation and contour furrowing were conducted to control soil erosion and the adjacent site with no controlling measures was considered as control. A total of 150 soil samples were collected from the surface layer (0-5 cm) of two sites and mean weight diameter of aggregates (MWD) were measured using dry and wet sieving (MWDd and MWDw, respectively). Based on digital soil mapping (DSM) approach and to map MWD spatially, several environmental covariates were derived from a Landsat 8 image and a digital elevation model (DEM). Two machine learning algorithms including artificial neural networks (ANN) and regression trees (RT) were used to predict MWD with covariates as inputs. Results indicated a significant difference between MWDd in two sites, but no significant difference was found between MWDw. Correlation analysis revealed no correlation between MWDw and all terrain attributes derived from the DEM, but significant correlations were obtained between MWDd and some terrain attributes. Most covariates derived from Landsat images had significant correlation with both MWDw and MWDd. ANN and TR had relatively high and almost the same accuracy in predicting MWDw, but in predicting MWDd, ANN was superior to RT. In general, the findings showed good performance of DSM techniques in predicting and spatial mapping of MWD.

کلیدواژه‌ها [English]

  • Artificial Neural Networks
  • Digital Soil Mapping
  • Regression Tree
  • Spatial Modeling

[1]    Akbari, S. and Vaezi, A.R. (2015). Investigating aggregates stability against raindrops impact in some soils of a semi-arid region, northwest of Zanjan. Water and Soil Science, 25 (2), 65-77.

[2]    Alijanpour Shalmani, A., Shabanpour, M., Asadi, H. and  Bagheri, F. (2011). Estimation of soil aggregate stability in forest`s soils of Guilan province by artificial neural networks and regression pedotransfer functions. Water and Soil Science, 21(3), 153-162.
[3]    Amirian, A., Taghizadeh-Mehrjardi, R., Kerry, R., Kumar, S., Khordehbin, S. and Yusefi Khanghah, S. (2017). Spatial 3D distribution of soil organic carbon under different land use types. Environmental Monitoring and Assessment, 189, 131-148.
[4]    Angers, D.A. (1998). Water-stable aggregation of Quebec silty clay soils: some factors controlling its dynamics. Soil and Tillage Research, 47(1-2), 91-96.
[5]    Annabi, M., Raclot, D., Bahri, H., Bailly, J.S., Gomez, C. and Le Bissonais, Y. (2017). Spatial variability of soil aggregate stability at the scale of an agricultural region in Tunisia. Catena, 153, 157–167.
[6]    Armin, M., Madian, M.H., Ahmadi, H., Rohipour, H., Salajegheh, A. and Ghorbaniakhabiri, V. (2014). Investigation on spatial variability of aggregate stability and the factors affecting soil aggregation using kriging geostatistics method (Case study: A part of Taleghan watershed). Watershed Management Research, 27(3), 107-122.
[7]    Bardsirizadeh, S., Esfandiarpour Borojeni, A., Abaszadeh Dehji, P. and Besalatpour, A.A. (2017). Effect of the physical fractions of organic matter on soil aggregate stabilities in three various land uses of forest, range, and agricultural lands. J. of Soil Management and Sustainable Production, 7(2), 47-65.
[8]    Besalatpour, A.A., Ayoubi, S., Hajabbasi, M.A., Mosaddeghi, M. and Schulin, R. (2013). Estimating wet soil aggregate stability from easily available properties in a highly mountainous watershed. Catena, 111, 72-79.
[9]    Breiman, L., Friedman, J.H., Olshan, R.A. and Stone, C.J. (1984). Classification and Regression Trees. Wadsworth, Belmont, CA.
[10]Chaney, K. and Swift, R.S. (1984). The influence of organic matter on aggregate stability in some British soils. Journal of Soil science, 35(2), 223-230.
[11]Chaplot, V. and Cooper, M. (2015). Soil aggregate stability to predict organic carbon outputs from soils. Geoderma, 243–244, 205–213.
[12]Cheng, M., Xiang, Y., Xue, Z., An, S. and Darboux, F. (2015). Soil aggregation and intra-aggregate carbon fractions in relation to vegetation succession on the Loess Plateau, China. Catena, 124, 77-84.
[13]Curtin, D., Campbell, C.A., Zentner, R.P. and Lafond, G.P. (1994). Long-term management and clay dispersibility in two Haploborolls in Saskatchewan. Soil Science Society of America Journal, 58(3), 962-967.
[14]Erfanian, M., Ghaharahmani, P. and Saadat, H. (2015). Assessment of soil erosion risk using a fuzzy model in Gharnaveh watershed, Golestan province. Iranian Journal of Watershed Management Science and Engineering, 23(7), 23-52.
[15]Eynard, A., Schumacher, T.E., Lindstrom, M.J. and Malo, D.D. (2004). Aggregate sizes and stability in cultivated South Dakota prairie Ustolls and Usterts. Soil Science Society of America Journal, 68(4), 1360-1365.
[16]Fullen, M.A. and Booth, C.A. (2006). Grass ley set-aside and soil organic matter dynamics on sandy soils in Shropshire, UK. Earth SurfaceProcesses and Landforms.The Journal of the British Geomorphological Research Group, 31(5), 570-578.
[17]Goh, T.B., Arnaud, R.J.St. and Mermut, A.R. (1993). Carbonates. in: Cartner, M.R. (Ed.), Soil sampling and methods of analysis. Canadian Society of Soil Science. Lewis Pub., Boca Raton, Canada, 177-185.
[18]Golmohamadi, F., Nabiollahi, K., Taghizadeh-Mehrjardi, R. and Davari, M. (2017). Digital mapping of soil erodibility (Case study: Dehgolan, Kurdistan province). J. of Water and Soil Conservation, 24(6), 87-103.
[19]Hajabasi, M.A. and Hemmat, A. (2000). Tillage impacts on aggregate stability and crop productivity in a clay- loam soil in central Iran. Soil and Tillage Research, 56, 205-212.
[20]Hajabasi, M.A., Besalatpour, A. and Melali, A.R. (2007). Effect of conversion of rangelands to agricultural lands on some physical and chemical characteristics of southern and southwestern soils of Isfahan. Journal of Water and Soil Science (Journal of Science and Technology of Agriculture and Natural Resources), 11(42), 525-534.
[21]Hengl, T., Rossiter, D.G. and Stein, A. (2003). Soil sampling strategies for spatial prediction by correlation with auxiliary maps. Soil Research, 41(8), 1403-1422.
[22]Hosseini, F., Mosaddeghi, M.R., Hajabbasi, M.A. and Sabzalian, M.R. (2015). Influence of tall fescue endophyte infection on structural stability as quantified by high energy moisture characteristic in a range of soils. Geoderma, 249, 87-99.
[23]Igwe, C.A., Akanmigbo, F.O.R. and Mbagwu, J.S.C. (1995). Physical properties of soils of Southeastern Nigeria and the role of some aggregating agents in their stability. Soil Sci. 160, 431- 441.
[24]Jahangard, M. (2002). Testing an artificial neural network for predicting soil water retention characteristics from soil physical and chemical properties. In 17th World Congress of Soil Science, Bangkok (Thailand), 14-21.
[25]Jakšík, O., Kodešová, R., Kubiš, A., Stehlíková, I., Drábek, O. and Kapicka, A. (2015). Soil aggregate stability within morphologically diverse areas. Catena, 127, 287–299.
[26]Jenny, H. (1941). Factors of Soil Formation: A System of Quantitative Pedology. McGraw-Hill, New York.
[27]Kemper W.D. and Rosenau K. (1986). Size distribution of aggregates. In: Klute, A. (ed), Methods of Soil Analysis: Part 1: Physical and Mineralogical Methods. American Society of Agronomy, Madison, WI. P. 425-442.
[28]Khenifer, J., Khademolrasol, A., Aamerikhah, H. (2018). Estimation of the stability of aggregates using early detection characteristics of topography and soil. The First National Conference on Sustainable Development in Agricultural Sciences and Natur al Resources with a Focus on Environmental Culture. Tehran, Iran, pp. 1-6.
[29]Khormali, F., Ajami, M., Ayoubi, S., Srinivasarao, C. and Wani, S.P. (2009). Role of deforestation and hillslope position on soil quality attributes of loess-derived soils in Golestan province. Iran. Agriculture, ecosystems & environment, 134(3-4), 178-189.
[30]Kia, M. (2009). Neural Networks in Matlab. Kian Rayan Sabz Publication, Tehran, 408.
[31]Le Bissonais. (1996). Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. European Journal of Soil Science, 47,425-431.
[32]Mahmoodabadi E., Karimi A., Haghnia GH.H. and Sepehr A. (2018). Assessing performance of Multivariate Linear Regression (MLR), Artificial Neural Network (ANN) and Gene Expression Programming (GEP) in estimating soil, Journal of Water and Soil Conservation, 24(2), 23-44.
[33]Marques, M.J., García‐Muñoz, S., Muñoz‐Organero, G. and Bienes, R. (2010). Soil conservation beneath grass cover in hillside vineyards under Mediterranean climatic conditions (Madrid, Spain). Land Degradation & Development, 21(2), 122-131.
[34]McBratney, A.B., Santos, M.M. and Minasny, B. (2003). On digital soil mapping. Geoderma, 117(1-2), 3-52.
[35]Moghiminejad, F., Jafari, M., Zare Chahouki, M.A., Ghasemi Arian, Y. and Kohandel, A. (2014). Comparison of soil physical and chemical properties between the sites of enclosure and grazing (Case study: Nazarabad-Karaj). Iranian Journal of Range and Desert Research, 21(4), 642-650.
[36]Nichols, K.A. and Toro, M. (2011). A whole soil stability index (WSSI) for evaluating soil aggregation. Soil and Tillage Research, 111(2), 99-104.
[37]Quirk, J.P. and Murray, R.S. (1991). Towards a model for soil structural behavior. Soil Research, 29(6), 829-867.
[38]Rasiah, V. and Kay, B.D. (1994). Characterizing changes in aggregate stability subsequent to introduction of forages. Soil Science Society of America Journal, 58(3), 935-942.
[39]Rouhipour, H., Farzaneh, H. and Asadi, H. (2004). The effect of aggregate stability indices on soil erodibility factors using rainfall simulator. Iranian Journal of Range and Desert Research, 11(3), 235-254.
[40]Shabani, A., Gholamalizadeh, A. and Golshahi, S. (2017). Predicting aggregate stability using soil properties in different land use. Journal of Agricultural Engineering, 39(2), 117-131.
[41]Taghizadeh-Mehrjardi, R., Minasny, B., Sarmadian, F. and Malone, B.P. (2014). Digital mapping of soil salinity in Ardakan region, central Iran. Geoderma, 213, 15-28.
[42]Vrieling, A., Sterk, G. and Beaulieu, N. (2002). Erosion risk mapping: a methodological case study in the Colombian Eastern Plains. Journal of Soil and Water Conservation, 57(3), 158-163.
[43]Wilding, L.P. (1985). Spatial variability: its documentation, accommodation, and implication to soil surveys. In: Nielsen DR, Bouma J (eds) Soil spatial variability. Pudoc, Wageningen, 166–194.
[44]Zhu, Z., Angers, D.A, Field, D.J. and Minany, B. (2017). Using ultrasonic energy to elucidate the effects of decomposing plant residues on soil aggregation. Soil and Tillage Research, 167, 1– 8.