نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار دانشکدۀ منابع طبیعی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران.

2 استاد دانشکدۀ منابع طبیعی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران.

3 دانش آموختۀ دکتری دانشکدۀ منابع طبیعی، دانشگاه تهران و عضو هیئت علمی دانشکدۀ منابع طبیعی، دانشگاه جیرفت، کرمان، ایران.

4 دانشیار پژوهشکدۀ هواشناسی و علوم جو، سازمان هواشناسی کشور.

5 استاد پژوهشکدۀ علوم هواشناسی و اقلیم، پادوا، ایتالیا.

چکیده

امروزه پدیدۀ گردوغبار به‌عنوان یکی از مهم‌ترین بلایای طبیعی در مناطق خشک و نیمه­خشک شناخته می­شود. به دلیل تأثیرات طولانی‌مدت این پدیده بر روی شاخص سلامت انسان‌ها از آن به‌عنوان یک بیماری مزمن یاد می­کنند. به همین منظور مطالعه و شناسایی الگو­ها و کانون­های پدیدۀ گردوغبار امری ضروری در مناطق خشک و نیمه‌خشک است. در این مطالعه به‌منظور شبیه­سازی شار گسیل گردوغبار برای تعیین کانون­های بحرانی داخلی و خارجی در فلات مرکزی ایران از مدل WRF-Chem، طرحوارۀ فرسایش بادی GOCART و طوفان 29 الی 31 تیرماه 1394 استفاده گردید. نتایج نشان داد بیابان­های عربی در عربستان سعودی، بیابان­های کشور عراق و همچنین بیابان قرقوم در ترکمنستان و حوزۀ هیرمند در کشور افغانستان از مهم‌ترین کانون­های بحرانی خارجی بوده که اتمسفر فلات مرکزی ایران را تحت تأثیر قرار می­دهند. همچنین بیابان مرکزی (دشت کویر) به‌عنوان چشمه اصلی گردوغبار و قسمت­های جنوبی حوزۀ لوت مرکزی و حوزۀ جازموریان به‌عنوان چشمه­های داخلی گردوغبار شناسایی شده­اند. همچنین نتایج نشان داد در حوزۀ لوت مرکزی به دلیل شرایط فرسایش­پذیری مقدار شار گسیل گردوغبار µg/m2.s6900 افزایش می­یابد.

کلیدواژه‌ها

عنوان مقاله [English]

Simulation and numerical analysis of dust emission flux using WRF-Chem model and GOCART wind erosion schema (dust storm : 20 to 22 July 2015)

نویسندگان [English]

  • TAYYEBEH MESBAHZADEH 1
  • Ali Salajegheh 2
  • farshad soleimani sardoo 3
  • Gholamreza Zehtabian 2
  • Abbas Ranjbar 4
  • Mario Marcello Miglietta 5

1 university of tehran

2 دانشگاه تهران

3 university of jiroft

4 SS

5 ss

چکیده [English]

Today, the phenomenon of dust is known as one of the most important natural disasters in arid and semi-arid regions. The long-term effects of this phenomenon on the human health index are referred to as chronic disease. Therefore, studying and identifying the patterns and centers of this phenomenon seems necessary in these areas. In this study, in order to simulate the dust emission flux to determine the internal and external critical centers in the central plateau of Iran, WRF-Chem model and GOCART wind erosion scheme and storm were used from July 19 to 21, 2015. The results showed that the Arabian deserts in Saudi Arabia, the deserts of Iraq, as well as the Gharegham desert in Turkmenistan and the Helmand region in Afghanistan are among the most important foreign crisis centers affecting Iran's central plateau atmosphere. Also, the Central Desert (Dasht-e Kavir) has been identified as the main source of dust and the southern parts of the Central Loot Basin and the Jazmourian Basin have been identified as the internal sources of dust. The results also showed that in the Central Loot basin, the amount of 6900 micrograms per square meter of dust increases per second due to the erosion conditions.

کلیدواژه‌ها [English]

  • Dust Flux
  • WRF-Chem model
  • GOCART Scheme
  • Central Desert and Loot Plain
  • Central Plateau of Iran
[1] Alfaro, S.C. (2008) Influence of soil texture on the binding energies of fine mineral dust particles potentially released by wind erosion. Geomorphology 93(3–4):157–167. https://doi.org/10.1016/j.geomo rph.2007.02.012
[2] Bian, H. Tie, X. Cao, J. Ying, Z. Han, S. and Xue, Y.(2011). Analysis of a severe dust storm event over China: Application of the WRF-Dust model, Aerosol Air Qual. Res. 11, 419–428, https://doi.org/10.4209/aaqr.2011.04.0053, 2011.
[3] Chen, S. Yuan, T. Zhang, X. Zhang, G. Feng, T. Zhao, D. Zang, Z. Liao, X. Ma, X. Jiang, N. Zhang, J. Yang, F. Lu, H.( 2018). Dust modeling over East Asia during the summer of 2010 using the WRF-Chem model. Journal of Quantitative Spectroscopy and Radiative Transfer. 213: 1-12
[4] Chin, M. Savoie, D. L. Huebert, B. J. Bandy, A. R. Thornton, D. C. Bates, T. S. Quinn, P. K. Saltzman, E. S. and De Bruyn, W. J.(2000). Atmospheric sulfur cycle simulated in the global model GOCART: Comparison with field observations and regional budgets, J. Geophys. Res.Atmos. 105, 24689–24712, https://doi.org/10.1029/2000JD900385, 2000.
[5] Fast, J. D. Gustafson Jr. W. I. Easter, R. C. Zaveri, R. A. Barnard, J. C. Chapman, E. G. Grell, G. A. and Peckham, S. E.(2006). Evolution of ozone, particulates, and aerosol direct forcing in an urban area using a new fully-coupled meteorology, chemistry, and aerosol model, J. Geophys. Res. 111, D21305, https://doi.org/10.1029/2005JD006721, 2006
[6] Ghorbani, M.( 2013). The economic geology of Iran: mineral deposits and natural resources. Springer Science & Business Media. Springer press.
[7] Ginoux, P. Chin, M. Tegen, I. Prospero, J. M. Holben B. Dubovik, O. and Lin, S. J.(2001). Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res.Atmos. 106, 20255–20273, https://doi.org/10.1029/2000JD000053.
[8] Gong, S. L.(2003). A parameterization of sea-salt aerosol source function for sub-and super-micron particles, Global Biogeochem. Cy. 17, 1097–1104, https://doi.org/10.1029/2003GB002079, 2003.
[9] Grell, G. A. Peckham, S. E. Schmitz, R. McKeen, S. A. Frost, G.Skamarock, W. C. and Eder, B.(2013). Fully coupled “online” chemistry within the WRF model, Atmos. Environ. 39, 6957–6975,.https://doi.org/10.1016/j.aeolia.2012.10.010.
[10] Jish Prakash, P. Stenchikov, G. Kalenderski, S. Osipov, S. Bangalath, H.( 2014). The impact of dust storms on the Arabian Peninsula and the Red Sea. Atmospheric Chemistry & Physics Discussions 14, 19181–19245.
[11] Klose, M. and Shao, Y.(2015). Large-eddy simulation of turbulent dust emission, Aeolian Res. 8, 49–58
[12] Klose, M. and Shao, Y.(2012). Stochastic parameterization of dust emission and application to convective atmospheric conditions, Atmos. Chem. Phys. 12, 7309–7320, https://doi.org/10.5194/acp- 12-7309-2012.
[13] Liu, M. Westphal, D. L. Walker, A. L. Holt, T. R. Richardson, K. A. and Miller, S. D.(2007). COAMPS real-time dust storm forecasting during Operation Iraqi Freedom, Weather Forecast. 22, 192–206, https://doi.org/10.1175/WAF971.1.
[14] Liu, M. Westphal, D. L. Wang, S. Shimizu, A. Sugimoto, N. Zhou, J. and Chen, Y.(2003). A high-resolution numerical study of the Asian dust storms of April 2001, J. Geophys. Res.Atmos. 108, 8653, https://doi.org/10.1029/2002JD003178.
[15] Marticorena, B. and Bergametti, G.(1995). Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme, J. Geophys. Res.Atmos. 100, 16415–16430, https://doi.org/10.1029/95JD00690.
[16] Marticorena, B. Bergametti, G. Aumont, B. Callot, Y. N’doumé, C. and Legrand, M.(1997). Modeling the atmospheric dust cycle: 2. Simulation of Saharan dust sources, J. Geophys. Res.Atmos. 102, 4387–4404, https://doi.org/10.1029/96JD02964.
[17] Naderi, M. and E. Raeisi. (2015). Climate change in a region with altitude differences and with precipitation from various sources, South-Central Iran. Theor. Appl. Climatol. J. 3:529-540
[18] Nickovic, S. Kallos, G. Papadopoulos, A. and Kakaliagou, O.(2001). A model for prediction of desert dust cycle in the atmosphere, J. Geophys. Res.Atmos. 106, 18113–18129, https://doi.org/10.1029/2000JD900794
[19] Park, S. H. Gong, S. L. Zhao, T. L. Vet, R. J. Bouchet, V. S. Gong, W. Makar, P. A. Moran, M. D. Stroud, C. and Zhang, J.(2007). Simulation of entrainment and transport of dust particles within North America in April 2001 (“Red Dust Episode”), J. Geophys. Res. 112, D20209, https://doi.org/10.1029/2007JD008443.
[20] Peckham, S. E. Fast, J. Schmitz, R. Grell, G. A. Gustafson,W. I. McKeen, S. A. Ghan, S. J. Zaveri, R. Easter, R. C. Barnard, J. and Chapman, E.(2011). WRF/Chem Version 3.3 User’s Guide, NOAA Technical Memo, 2011.
[21] Rezazadeh, M. Irannejad, P. and Shao,Y.(2013). Dust emission simulation with the WRF-Chem model using new surface data in the Middle East regionJournal of Earth and Space Physics, Volume 39, Issue 1.pp 191-212.
[22] Shao, Y.(2001). A model for mineral dust emission, J. Geophys. Res.Atmos. 106, 20239–20254, https://doi.org/10.1029/2001JD900171.
[23] Su, L. and Fung, J. C. H.(2015). Sensitivities of WRF-Chem to dust emission schemes and land surface properties in simulating dust cycles during springtime over East Asia, J. Geophys. Res.Atmos. 120, 11215–11230, https://doi.org/10.1002/2015JD023446.
[24] Tang,Y. Han, Y. Liu, Z. (2018). Temporal and spatial characteristics of dust devils and their contribution to the aerosol budget in East Asia—An analysis using a new parameterization scheme for dust devils. Atmospheric Environment 182: 225-233
[25] Tegen, I. and Fung, I.(1994).Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness, J. Geophys. Res. Atmos. 99, 22897–22914, https://doi.org/10.1029/94JD01928, 1994.
[26] Wang, Z. Ueda, H. and Huang, M. Y.(2000). A deflation module for use in modeling long-range transport of yellow sand over East Asia, J. Geophys. Res. 105, 26947–26959, https://doi.org/10.1029/2000JD900370
[27] Woodward, S.(2001). Modeling the atmospheric. life cycle and radiative impact of mineral dust in the Hadley Centre climate model, J. Geophys. Res. 106, 18155–18166,https://doi.org/10.1029/2000JD900795.
[28] Zender, C. S.(2003). Mineral Dust Entrainment and Deposition (DEAD) Model: Description and 1990s dust climatology, J. Geophys. Res. 108, 4416, https://doi.org/10.1029/2002JD002775, 2003.
[29] Zhang, Y. Liu, Y. Kucera, P. A. Alharbi, B. H. Pan, L. and Ghulam, A.(2015). Dust modeling over Saudi Arabia using WRF-Chem: March 2009 severe dust case, Atmos. Environ. 119, 118–130, https://doi.org/10.1016/j.atmosenv.2015.08.032, 2015.
[30] Zhao, C. Chen, S. Leung, L. R. Qian, Y. Kok, J. F. Zaveri, R. A. and Huang, J.(2013). Uncertainty in modeling dust mass balance and radiative forcing from size parameterization, Atmos. Chem. Phys. 13, 10733–10753, https://doi.org/10.5194/acp-13-10733- 2013, 2013.
[31] Kok, Jasper F. Parteli, Eric J.R. Michaels, Timothy I. and Bou Karam, Diana. (2012). “The physics of wind-blown sand and dust”, Journal of Rep. Prog. Phys. No. 75, pp. 1-119.