بررسی تغییرات کاربری اراضی دشت جیرفت در دورۀ حال و آینده (با نگاهی بر تناسب کاربری اراضی کشاورزی)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکدۀ اقتصاد و توسعه، دانشگاه تهران، کرج، ایران؛ عضو هیئت علمی دانشکدۀ کشاورزی، دانشگاه جیرفت، کرمان، ایران.

2 استاد دانشکدۀ اقتصاد و توسعه، دانشگاه تهران، کرج، ایران.

3 استادیار دانشکدۀ اقتصاد و توسعه، دانشگاه تهران، کرج، ایران.

4 دانشیار دانشکدۀ منابع طبیعی، دانشگاه تهران، کرج، ایران.

چکیده

بررسی روند توسعۀ کشت محصولات بر اساس نیاز آبی در کنار آشکار سازی و پیش‌بینی تغییرات کاربری اراضی تصویر روشنی از وضعیت منابع آبی و تغییرات کاربری اراضی در اختیار برنامه‌ریزان قرار می‌دهد تا آگاهانه‌تر بتوانند در راستای حفظ منابع آب و خاک برنامه‌ریزی نمایند. از این­رو، تحقیق حاضر با دو هدف کلی صورت پذیرفت. هدف اول، بررسی تغییرات کاربری اراضی در گذشته و پیش‌بینی آن در آینده با استفاده از مدل‌ساز تغییر زمین (LCM) و روش رگرسیون لجستیک بود. آشکارسازی تغییرات کاربری اراضی با به­کارگیری تصاویر ماهواره Landsat و سنجنده‌های TM (تصویر سال 1369)، ETM+ (تصویر سال 1382) و OLI (تصویر سال 1398) انجام شد. هدف دوم مطالعه، بررسی روند توسعۀ محصولات کشاورزی از منظر نیاز آبی در سه دهۀ گذشته بود که بر اساس آمار و اطلاعات سازمان جهاد کشاورزی مورد بررسی قرار گرفت. مدل‌سازی نیروی انتقال براساس روش رگرسیون لجستیک و متغیرهای مدل رقومی ارتفاع (DEM)، شیب، جهت، زمین شناسی، فاصله از گسل، فاصله از جاده، فاصله از رودخانه، فاصله از شهر، شاخص NDVI انجام گرفت و جهت پیش‌بینی تغییرات کاربری اراضی در دورۀ آتی، از زنجیرۀ مارکوف استفاده گردید. همچنین با استفاده از آمار و اطلاعات سه دهۀ گذشته و اطلاعات سند ملی آبیاری کشور، روند تغییرات سطح زیر کشت محصولات زراعی عمده بر اساس نیاز آبی در دشت جیرفت مورد مطالعه قرار گرفت. نتایج تغییرات کاربری اراضی حاکی از آن بود که بیشترین افزایش مساحت مربوط به اراضی کشاورزی با 444 کیلومتر مربع و بیشترین کاهش مساحت مربوط به اراضی مرتعی (404 کیلومترمربع) بوده است و تخریب اراضی مرتعی و بایر بیشتر در راستای تبدیل این اراضی به اراضی کشاورزی و اراضی مسکونی بوده است. همچنین نتایج حاصل از پیش‌بینی کاربری آینده 1410 با استفاده از مدل LCM نشان داد که در دورۀ زمانی مورد مطالعه (1410- 1369) مساحت اراضی مسکونی و کشاورزی به ترتیب 9/54 و 69/667 کیلومتر مربع افزایش خواهند یافت. نتایج حاکی از آن بود که در سه دهۀ گذشته کشت محصولات زراعی با نیاز آبی بالا در دشت جیرفت توسعۀ بیشتری داشته است که با توجه به وضعیت بحرانی منابع آب در دشت جیرفت می‌تواند اثرات منفی برای اکوسیستم این دشت داشته باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating land-use changes in Jiroft plain in the present and future period with a look at agricultural land-use suitability

نویسندگان [English]

  • Mohsen Adeli Sardooei 1
  • Ali Asadi 2
  • Khalil Khalil 2
  • Ali Akbar Barati 3
  • Hassan Khosravi 4
1 Department of agricultural development and management, University of Tehran: ّFaculty member,, University of Jiroft, Jiroft, Iran
2 Department of agricultural development and management, University of Tehran
3 Dept. Agricultural Management and development, University of Tehran
4 Associate Professor, Faculty of Natural Resources, University of Tehran
چکیده [English]

Evaluating of the development of crops based on water needs along with detecting and predicting land use changes will provide a clear picture of changes in water resources and anthropogenic effects of the agricultural sector for environmental planners to plan more consciously in the field of water and soil conservation, Therefore, the current study was conducted with two general objectives. The first goal was to examine land use in the past and predict land use in the future using the Land Change Modeler (LCM) and logistic regression method. Detecting land use changes was performed using Landsat satellite images including sensors of TM (1990), ETM+ (2001) and OLI (2019). The second object of the study was to examine the development trend of agricultural products in terms of water needs in the last three decades, which was examined based on databases of the Agricultural Jihad Organization (AJO). The transition potential modelling was performed based on logistic regression method and variables of digital elevation model (DEM), slope, aspect, geology, the distance from fault, the distance from road, the distance from river, distance from residential lands, NDVI and land use was predicted using Markov chain in future. Also, the trend of changes in the area under cultivation of major crops based on water needs in Jiroft plain was studied based on the data of the last three decades and the data of the National Irrigation Document, which has been less considered by researchers in land use change studies.

کلیدواژه‌ها [English]

  • Land use change
  • cultivation development
  • Jiroft plain
  • crops
  • water requirement
[1]   Adeli Sardoie, M., Hayati, B., Zarifian, S., Hosseini Nasab, S. and Mohammad Rezaie, R. (2011). Comparison of Sustainable Agriculture of Practices in Vegetables of Jiroft County (Case Study: Onions, Potatos and Tomatos). Journal of agricultural science and sustainable production, 21(1), 15-28. (In Persian)
[2]   Afifi, M E. (2020). Modeling land use changes using Markov chain model and LCM model. researches in Geographical Sciences, 20 (56), 141-158. (In Persian)
[3]   Alipour, H. and Olya, H. G. T. (2015). Sustainable planning model toward reviving Lake Urmia. International Journal of Water Resources Development, 31(4), 519-539.
[4]   Anand, J., Gosain, A. K. and Khosa, R. (2018). Prediction of land use changes based on Land Change Modeler and attribution of changes in the water balance of Ganga basin to land use change using the SWAT model. Science of the Total Environment, 644, 503-519.
[5]   Ansari, A. and Golabi, M. H. (2019). Prediction of spatial land use changes based on LCM in a GIS environment for Desert Wetlands–A case study: Meighan Wetland, Iran. International Soil and Water Conservation Research, 7(1), 64-70.
[6]   Azimi Sardari, M. R., Bazrafshan, O., Panagopoulos, T. and Sardooi, E. R. (2019). Modeling the impact of climate change and land use change scenarios on soil erosion at the Minab Dam Watershed. Sustainability, 11(12), 3353.
[7]    Azizi Ghalati, S., Rangzan, K., Taghizadeh, A. and Ahmadi, S. (2014). LCM Logistic regression modelling of land-use changes in Kouhmare Sorkhi, Fars province. Iranian Journal of Forest and Poplar Research, 22(4), 585-596. (In Persian)
[8]   Barati, Kh., Abedi koupaee, J., Darvishi, E. and Yousefi, A. (2019). Estimation of net irrigation requirement of the crop pattern in kermanshah plain and comparison with the data in the national water document. Iranian Journal of Water Research in Agriculture, 32(4), 543-553. (In Persian)
[9]   Barbier, E. B., Burgess, J. C. and Grainger, A. (2010). The forest transition: towards a more comprehensive theoretical framework. Land Use Policy, 27(2), 98-107.
[10]    Bateman, I. J., Harwood, A. R., Mace, G. M., Watson, R. T., Abson, D. J., Andrews, B. and Fezzi, C. (2013). Bringing ecosystem services into economic decision-making: land use in the United Kingdom. science, 341(6141), 45-50.
[11]    Busko, M. and Szafranska, B. (2018). Analysis of changes in land use patterns pursuant to the conversion of agricultural land to non-agricultural use in the context of the sustainable development of the Malopolska region. Sustainability, 10(1), 136.
[12]    Du, X., Jin, X., Yang, X., Yang, X. and Zhou, Y. (2014). Spatial pattern of land use change and its driving force in Jiangsu province. Int. J. Environ. Res. Public Health 11, 3215–3232.
[13]    Eastman, J. R., Van Fossen, M. E. and Solarzano, L. A. (2005). Transition potential modeling for land cover change. GIS, spatial analysis and modeling, 357-386.
[14]   Eastman, J. R. (2006). IDRISI Andes guide to GIS and image processing. Clark University, Worcester, 328.
[15]   Eskandari, Damaneh, H., Zehtabian, Gh., Salajegheh, A., Ghorbani, M. and Khosravi, H. (2018). Assessing the effect of land use changes on groundwater quality and quantity (Case study: west basin of Jazmoryan wetland), Rangeland and Watershed Management, 71 (3), 563-578. (In Persian)
[16]    Esandari, H., Borji, M., Khosravi, H., Nakhaee Nejadfar, S. and Eskandari, H. (2016). Change Detection of of Bakhtegan and Tashk Basin during 2001-2013. International Journal of Forest, Soil and Erosion (IJFSE), 6(2), 67-71.
[17]    Fazel, N., Haghighi, A. T. and Kløve, B. (2017). Analysis of land use and climate change impacts by comparing river flow records for headwaters and lowland reaches. Global and Planetary Change, 158, 47-56.
[18]    Gholamalifar, M., Jourabian Shoshtari, Sh., Abkar, A. and Naimi B. (2013). Comparison of logistic regression algorithms and artificial neural network in experimental modeling of transmission potential change of coastal land cover in Mazandaran province. Environmental Research, 5(9), 167-176.
[19]    Hu, B., Shao, J. and Palta, M. (2006). Pseudo-R 2 in logistic regression model. Statistica Sinica, 847-860.
[20]    Ildermi, A., Nouri, H., Naderi, M., Aghabeigi, S. and Zaini Wand, H., )2017(. Forecasting Land Use Change Using Markov Chain Model and CA Markov (Case Study: Green Watershed). Watershed Management Research. 8 (16), 232-240. (In Persian)
[21]    Jahanifar, K., Amirnejad, H., Azadi, H., Adenle, A. A. and Scheffran, J. (2019). Economic analysis of land use changes in forests and rangelands: Developing conservation strategies. Land Use Policy, 88, 104003.
[22]    Kamyab, H., Salman Mahini, A., Hosseini, S.M. and Gholamalifard, M. )2010(. Adopt a data driven approach using logistic regression to model urban development Gorgan. Journal of Ecology, 36, 96-89 (In Persian).
[23]    Linkie, M., Smith, R.J. and Leader-Williams, N. )2004(. Mapping and predicting deforestation patterns in the lowlands of Sumatra. Biodiversity and Conservation, 13 (10), 1809-1818
[24]    Madani, K. (2014). Water management in Iran: what is causing the looming crisis? Journal of Environmental Studies and Sciences, 4(4), 315-328.
[25]    Mazaheri, M., Esfandiari, M., Masihabadi, M. H. and Kamali, A. (2012). Monitoring time changes in land use using remote sensing techniques and GIS (Case study: Jiroft, Kerman province). Remote sensing and GIS in natural resources, 4(2), 39-25. (In Persian)
[26]    Mertens, B. and Lambin, E. F. (1997). Spatial modelling of deforestation in southern Cameroon: spatial disaggregation of diverse deforestation processes. Applied Geography, 17(2), 143-162.
[27]    Miles, L. and Kapos, V. (2008). Reducing greenhouse gas emissions from deforestation and forest degradation: global landuse implications. Science, 320 (5882), 1454–1455.
[28]    Mishra, V. N., Rai, P. K. and Mohan, K. (2014). Prediction of land use changes based on land change modeler (LCM) using remote sensing: a case study of Muzaffarpur (Bihar), India. Journal of the Geographical Institute" Jovan Cvijic", SASA, 64(1), 111-127.         
[29]    Mohammadyary, F., purkhabbaz, H., aghdar, H. and Tavakoly, M. (2019). Predicted trends in land use city Behbahan years 2014 to 2028 Using LCM model. Geographic Space. 19 (65), 37-56. (In Persian)
[30]    Msofe, N. K., Sheng, L. and Lyimo, J. (2019). Land use change trends and their driving forces in the Kilombero Valley Floodplain, Southeastern Tanzania. Sustainability, 11(2), 505.
[31]     Parma, R., Maleknia, R., Shataee, S. and Naghavi, H. (2017). Land cover change modeling based on artificial neural networks and transmission potential method in lcm (case study: forests gilan-e gharb, Kermanshah province). Town and Country Planning, 9(1), 129-151. (In Persian)
[32]    Pourseyadi, A. and Kashkuli, H. A. (2011). Studying of Groundwater Conditions in Jiroft Basin with Modflow. Journal of Irrigation Science and Engineering, 35(2), 51-63. (In Persian)
[33]    Rondhi, M., Pratiwi, P. A., Handini, V. T., Sunartomo, A. F. and Budiman, S. A. (2018). Agricultural land conversion, land economic value, and sustainable agriculture: A case study in East Java, Indonesia. Land, 7(4), 148.
[34]    Ruan, X., Qiu, F. and Dyck, M. (2016). The effects of environmental and socioeconomic factors on land-use changes: a study of Alberta, Canada. Environmental Monitoring and Assessment, 188(8), 446.
[35]    Shirmohammadi, B., Malekian, A., Salajegheh, A., Taheri, B., Azarnivand, H., Malek, Z., & Verburg, P. H. (2020). Scenario analysis for integrated water resources management under future land use change in the Urmia Lake region, Iran. Land Use Policy, 90 (10), 42-99.
[36]    Singh, N., & Punia, M. (2018). Geospatial Approach for Land Use/Land Cover Change Prediction: A case study of Bhagirathi Basin, Uttarakhand, INDIA. cosp, 42, A3-1.
[37]    Vafaie Sasan, D., Safatali, A. and Pirvaghar, M. (2012). Monitoring and forecasting the trend of spatial land use changes using LCM model (Case study: Marivan region). Iranian Forest Journal, Iranian Forestry Association, 3 (5), 323-336. (In Persian)
[38]    Wang, X., Zheng, D. and Shen, Y. (2008). Land use change and its driving forces on the Tibetan Plateau during 1990–2000. Catena, 72(1), 56-66.
[39]    World Bank, 2017. Annual Report 2017. End Extreme Poverty-Boost Shared Prosperity. Available at: http://pubdocs.worldbank.org/en/908481507403754670/Annual- Report-2017-WBG.pdf.