نشریه علمی - پژوهشی مرتع و آبخیزداری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری بیابانزدایی، دانشکده منابع طبیعی، دانشگاه تهران

2 استاد، دانشکده منابع طبیعی، دانشگاه تهران

3 دانشیار دانشکده منابع طبیعی، دانشگاه تهران

4 استاد دانشکده منابع طبیعی دانشگاه تهران

5 استادیار، دانشکده منابع طبیعی دانشگاه تهران

چکیده

دراین تحقیق برای برررسی پوشش گیاهی از شاخص NDVI بدست آمده از سنجنده MODIS و برای بررسی خشکسالی از شاخص SPI مبتنی بر داده‌های بارندگی این حوزه در دو اقلیم خشک و خشک نیمه‌مرطوب در بازه زمانی (1397-1380) استفاده شد. نتایج نشان داد به طور متوسط 53 درصد از این منطقه دچار خشکسالی بوده است. همچنین در بازه زمانی 1380 تا 1382 نسبت به دیگر بازه‌های زمانی این دوره خشکسالی شدیدتر بوده است علاوه براین پیک شاخص پوشش گیاهی در سال 1384 رخ داده است که بیانگر متاثر بودن پوشش گیاهی از نوسانات بارندگی منطقه است. ماتریس همبستگی بین سه شاخص نامبرده حاکی از آن است که شاخص NDVI همبستگی یکسانی نسبت به دو شاخص SPI و بارندگی سالیانه داشته است. همچنین نتایج این همبستگی در سطح دو اقلیم خشک و خشک‌نیمه‌مرطوب به ترتیب 38/0 و 25/0 بوده است که این نتایج بیانگر این است که هر چند که همبستگی پایینی وجود دارد ولی این رابطه مثبت بوده و در سطح اقلیم‌های مختلف یک منطقه متفاوت است. از طرفی دیگر بیشترین کلاس خشکسالی در اقلیم‌های خشک و خشک‌نیمه‌مرطوب به ترتیب به میزان 55/55 و 50 درصد در طبقه خشکسالی نسبتا نرمال قرار دارد. با توجه به مطالب ذکر شده می‌توان دریافت که با استفاده از داده‌های سنجش از دوری می‌توان به پایش پاسخ اکوسیستم‌های مناطق خشک و خشکنیمه‌مرطوب نسبت به تغییرات اقلیمی پرداخت. همچنین این مطالعه نشان داد که مناطق خشک و ‌خشک‌نیمه-مرطوب نسبت به تغییرات اقلیمی و انسانی بسیار حساس تر هستند.

کلیدواژه‌ها

عنوان مقاله [English]

Impact of meteorological drought on vegetation change trends in arid and semi-humid climates (HablehRood Watershed)

نویسندگان [English]

  • Ahmad Gillvare 1
  • Gholamreza Zehtabian 2
  • Hassan Khosravi 3
  • Hossein Azarnivand 4
  • Salman Zare 5

1 PhD student in desertification, Faculty of Natural Resource, University of Tehran, Iran

2 professor, Faculty of Natural Resource, University of Tehran, Iran

3 Associate Professor, Faculty of Natural Resources, University of Tehran

4 Professor, Faculty of Natural Resource, University Of Tehran, Iran

5 Assistant Professor, Faculty of Natural Resource, University of Tehran

چکیده [English]

Due to the importance of vegetation cover in these areas, the aim of this study was to investigate the effect of drought, on vegetation of HablehRood watershed.Initially, NDVI index obtained from MODIS sensor was used to study vegetation cover and then SPI index based on rainfall data of two basins in two arid and semi-humid climates was used for drought assessment (2001-2018) using image processing methods. The results showed that during this 18-year period, 53% of the region had droughts on average. Also during the period 2001-2003, drought was more severe than other periods (2003-2018). In addition, the highest vegetation index occurred in 2005, indicating that vegetation was affected by rainfall fluctuations in the region. The correlation matrix between the three indices indicated that NDVI had the same correlation with SPI and annual rainfall. The results of this correlation in dry and semi-humid climates showed that the correlation was 0.38 and 0.25, respectively. These results indicate that this relationship is positive and robust in different climates of a region؟. On the other hand, drought class is mainly located in dry and semi-humid climates, with 55.55% and 50% in relatively normal drought class, respectively. Based on the above, it can be concluded that using remote sensing data can monitor the response of semi-humid and dry arid ecosystems to climate change. The study also showed that arid and semi-arid regions are highly susceptible to climate change and human anomalies. Therefore, the destruction of these lands will have many environmental and economic consequences.

کلیدواژه‌ها [English]

  • HablehRood
  • Correlation
  • Drought
  • NDVI
  • Remote Sensing
  • AbdelRahman, M. A., Natarajan, A., Hegde, R., & Prakash, S. S. (2018). Assessment of land degradation using comprehensive geostatistical approach and remote sensing data in GIS-model builder. The Egyptian Journal of Remote Sensing and Space Science.
  • Akhtar-Schuster, M., Stringer, L.C., Erlewein, A., Metternicht, G., Minelli, S., Safriel, U., Sommer, S., 2017. Unpacking the concept of land degradation neutrality and addressing its operation through the Rio conventions. J. Environ. Manage. 195, 4–15.
  • Anderegg, W. R., Schwalm, C., Biondi, F., Camarero, J. J., Koch, G., Litvak, M. & Wolf, A. (2015). Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science, 349(6247), 528-532.
  • Azarakhshi, M., Mahdavi, M., Arzani, H., & Ahmadi, H. (2011). Assessment of the Palmer drought severity index in arid and semi arid rangeland:(Case study: Qom province, Iran). Desert, 16(2), 77-86.
  • Behrang Manesh, M., Khosravi, H., Heydari Alamdarloo, E., Sadi Alekasir, S., Gholami, A. & Singh, V.P. (2019). Linkage of agricultural drought with meteorological drought in different climates of Iran. Theoretical and Applied Climatology, 138, pages1025–1033
  • Bréda, N., & Granier, A. (1996). Intra-and interannual variations of transpiration, leaf area index and radial growth of a sessile oak stand (Quercus petraea). In Annales des sciences forestières (Vol. 53, No. 2-3, pp. 521-536). EDP Sciences.
  • Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V. & Chevallier, F. (2005). Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437(7058), 529.
  • Safaei, H, Asghari, K, Safavi, H. 2013. Comparison of Groundwater Drought Index (GRI) with Standardized Precipitation Index (SPI) (Case Study: Segway-Segazi Aquifer), 7th National Congress of Civil Engineering, Sistan-Baluchestan University, Zahedan. (In Persian).
  • Ebrahimzadeh, s, Bazrafshan, j, Ghorbani, kh. 2013. Comparative Study of Drought Indices Based on Satellite and Terrestrial Data Using Change Vector Analysis Technique (Case Study: Kermanshah Province), Journal of Soil Water (Agricultural Science and Technology), Volume 27, Number 5, Page 1045 -1034. (In Persian).
  • Eskandary dameneh, H, Jafari, R, Soltani Kopai, S. Evaluation of Land Degradation Using Satellite Data Indices, Journal of Desert Management, Volume 5, Number 10, pp. 56-43. (In Persian).
  • Farrokhzadeh, B, Mansouri, Sh, Sepehri, A. 2017. Determination of Correlation Between NDVI and EVI Vegetation Indices with SPI Meteorological Drought Index (Case Study: Plain Rangelands of Golestan Province), Journal of Agricultural Meteorology, Volume 5, Number 10, pp. 65-56. (In Persian).
  • Fazel Dehkordi, L, Azarniwand, H, Zare Chahuki, M, Mahmoudi Kohan, F, Khalighi Sigaroudi, Sh. 2016. Drought Monitoring Using NDVI Vegetation Index (Case Study: Rangelands of Ilam Province), Rangeland and Watershed Management (Iranian Natural Resources), Volume 69, Number 1, pp. 154-141. (In Persian).
  • Frank, D., Reichstein, M., Bahn, M., Thonicke, K., Frank, D., Mahecha, M. D. & Beer, C. (2015). Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Global Change Biology, 21(8), 2861-2880.
  • Greve, P., Roderick, M. L., & Seneviratne, S. I. (2017). Simulated changes in aridity from the last glacial maximum to 4xCO2. Environmental Research Letters, 12(11), 114021.
  • Huang, L., He, B., Chen, A., Wang, H., Liu, J., Lű, A., & Chen, Z. (2016). Drought dominates the interannual variability in global terrestrial net primary production by controlling semi-arid ecosystems. Scientific reports, 6, 24639.
  • Jha, S., Das, J., Sharma, A., Hazra, B., & Goyal, M. K. (2019). Probabilistic evaluation of vegetation drought likelihood and its implications to resilience across India. Global and Planetary Change, 176, 23-35.
  • Khosravi, H., Haydari Alamdarloo, E., Shekoohizadegan, S. & Zareie, S. (2017). Assessment the effect of drought on vegetation in desert area using landsat data. The Egyptian Journal of Remote Sensing and Space Science ,20: S3-S12.
  • Kouchoukos, N., Smith, R., Gleason, A., Thenkabail, P., Hole, F., Barkoudah, Y. & Foster, J. (1998). Monitoring the distribution, use, and regeneration of natural resources in semi-arid Southwest Asia. J. Albert, M. Bernhardsson ET R. Kenna (éds), Transformations of Middle Eastern natural environments: legacies and lessons, YSFES, 103, 467-491.
  • Li, X., Li, Y., Chen, A., GAO, M., Slette, I. J., & Piao, S. (2019). The impact of the 2009/2010 drought on vegetation growth and terrestrial carbon balance in Southwest China. Agricultural and Forest Meteorology, 269, 239-248.
  • McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology,Vol. 17, No. 22, pp. 179-183.
  • Nanzad, L., Zhang, J., Tuvdendorj, B., Nabil, M., Zhang, S., & Bai, Y. (2019). NDVI anomaly for drought monitoring and its correlation with climate factors over Mongolia from 2000 to 2016. Journal of Arid Environments, 164, 69-77.
  • Potter, C., Klooster, S., Hiatt, C., Genovese, V., & Castilla-Rubio, J. C. (2011). Changes in the carbon cycle of Amazon ecosystems during the 2010 drought. Environmental Research Letters, 6(3), 034024.
  • Prince, S. D., Wessels, K. J., Tucker, C. J., & Nicholson, S. E. (2007). Desertification in the Sahel: a reinterpretation of a reinterpretation. Global Change Biology, 13(7), 1308-1313.
  • Qomshion, M, Malekian, A. 2009. Determining the Most Probable Probabilistic Distribution of Regional Floods (Case Study: Hableh Rood Watershed), National Conference on Watershed Management Science and Engineering (Sustainable Natural Disaster Management), Volume 5, pp. 10-1. (In Persian).
  • Rahimi, M, Damavandi, A, Jafarian, V. 2013. Evaluation of Remote Sensing Applications in Evaluation and Monitoring of Land Degradation and Desertification, Journal of Geographical Information, Volume 22, Number 88, pp. 128-115. (In Persian).
  • Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I. & Papale, D. (2013). Climate extremes and the carbon cycle. Nature, 500(7462), 287.
  • SafariShad, M, Habibnezhad Roshan, M, Eldermi, A. 2016. Evaluation of NDSI Index in Drought Monitoring Using Remote Sensing Technique (Case Study: Isfahan Province), Journal of Geographical Information, Volume 25, Number 100, pp. 44-35. (In Persian).
  • Schwalm, C. R., Anderegg, W. R., Michalak, A. M., Fisher, J. B., Biondi, F., Koch, G. & Huntzinger, D. N. (2017). Global patterns of drought recovery. Nature, 548(7666), 202.
  • Van der Molen, M. K., Dolman, A. J., Ciais, P., Eglin, T., Gobron, N., Law, B. E. & Chen, T. (2011). Drought and ecosystem carbon cycling. Agricultural and Forest Meteorology, 151(7), 765-773.
  • Vicente-Serrano, S. M., Gouveia, C., Camarero, J. J., Beguería, S., Trigo, R., López-Moreno, J. I. & Morán-Tejeda, E. (2013). Response of vegetation to drought time-scales across global land biomes. Proceedings of the National Academy of Sciences, 110(1), 52-57.
  • Wang, X., Shen, H., Zhang, W., Cao, J., Qi, Y., Chen, G., & Li, X. (2015). Spatial and temporal characteristics of droughts in the Northeast China Transect. Natural Hazards, 76(1), 601-614.
  • Yang, Y., Guan, H., Batelaan, O., McVicar, T. R., Long, D., Piao, S. & Simmons, C. T. (2016). Contrasting responses of water use efficiency to drought across global terrestrial ecosystems. Scientific reports, 6, 23284.
  • Yang, Y., Long, D., Guan, H., Scanlon, B. R., Simmons, C. T., Jiang, L., & Xu, X. (2014). GRACE satellite observed hydrological controls on interannual and seasonal variability in surface greenness over mainland Australia. Journal of Geophysical Research: Biogeosciences, 119(12), 2245-2260.
  • Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R., & Donohue, R. J. (2019). Hydrologic implications of vegetation response to elevated CO 2 in climate projections. Nature Climate Change, 9(1), 44.
  • Zahiri, A, Sharifian, H, Abrari, Farzaneh, Rahimian, M. 2014. Evaluation of Wet and Drought Phenomena in Khorasan Province Using Indexes (PNPI, SPI, NITZCHE), Journal of Irrigation and Drainage, Volume 8, Number 4, pp. 865-845. (In Persian).
  • Zhang, X., & Zhang, B. (2019). The responses of natural vegetation dynamics to drought during the growing season across China. Journal of Hydrology, 574, 706-714.
  • Zhang, Y., Xiao, X., Guanter, L., Zhou, S., Ciais, P., Joiner, J. & Kato, E. (2016). Precipitation and carbon-water coupling jointly control the interannual variability of global land gross primary production. Scientific reports, 6, 39748.
  • Zhao, M., & Running, S. W. (2010). Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329(5994), 940-943.
  • Zuo, D., Cai, S., Xu, Z., Peng, D., Kan, G., Sun, W. & Yang, H. (2019). Assessment of meteorological and agricultural droughts using in-situ observations and remote sensing data. Agricultural Water Management, 222, 125-138.