نشریه علمی - پژوهشی مرتع و آبخیزداری

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، دپارتمان علوم زمین، مرکز تحقیقات بین المللی بیابان، دانشگاه تهران

چکیده

پویایی فعالیت‌های انسانی، پایداری سامانه‌های پشتیبانی زندگی جهانی را تهدید می‌کند. تحلیل داده‌های تحولات انسانی نقش محوری در ارزیابی مشکلات محیط‌زیستی ایفا می‌کند. این مطالعه با هدف تجزیه و تحلیل فعالیت‌های انسانی در حوزه آبخیز انجام شده است. مطالعات و تجزیه و تحلیل‌ها نشان داد که متغیرهای تحول انسانی شامل نوع، شدت و روند مداخله انسان است. الگوهای فضایی و زمانی نوع فعالیت (کاربری سرزمین)، شدت و روند دخالت انسان با استفاده تصاویر ماهواره و بازدیدهای صحرایی مورد مطالعه قرار گرفتند. طبقه‌بندی و نقشه‌ کاربری سرزمین در دو مرحله انجام شد. فاز عملکردی، شامل کاربری‌های اصلی زمین از جمله کشاورزی، مرتع، شهری و منابع آب و فاز فعالیت، شامل ده نوع کاربری زمین بود. مطالعه شدت مداخلات انسان در واحدهای کاربری سرزمین، بر اساس گسترش زمانی توسعه زمین‌های کشاورزی (کاربری کشاورزی)، ارزیابی وضعیت مرتع (کاربری مرتع) و وسعت تحت تاثیر بودن سرزمین (کاربری شهری و منابع آب) انجام شد. نتایج مطالعات کاربری سرزمین نشان داد که اراضی مرتعی 2/77 درصد و کاربری‌های کشاورزی، محدوده شهری و منابع آب به ترتیب 5/21، 1/1 و 2/0 درصد را به خود اختصاص داده اند. نتایج روند مداخلات نشان داد که روند از شرایط طبیعی به سمت جایگزینی ساختارهای با فعالیت‌های انسان ساخت ادامه دارد. روند دخالت انسان ، رشدی از فعالیت کشاورزی در اراضی مرتعی و همچنین از دست‌رفتن زیاد زمین‌های زراعی را در رشد ناهمگن شهری و صنعتی، نشان داده است. نتایج مطالعه، سازگاری بین سه متغیر تغییر و تحول انسانی نوع، شدت و روند دخالت انسان را نشان می‌دهد.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation of human activities in the watershed (Case study: Lalehzar watershed, Kerman)

نویسنده [English]

  • Naser Mashahadi

Assistant Professor, Geo Science Dept., International Desert Research Center (IDRC), University of Tehran

چکیده [English]

The dynamics of human activities threaten the sustainability of global life-support systems. Analyze of anthropogenic transformation data play a central role in environmental problems evaluation. This study aims to analyze human activities in watershed. Studies and analyzes revealed that the anthropogenic transformation variables include the type, intensity and trend. Spatial and temporal patterns of the type of activity (land use), intensity and human intervention were studied using satellite images and field observation. The classification and land use map were done in two phases: The functional phase included the main land uses including agriculture, rangeland, urban and water resources, and the activity phase included ten types of land use. The study of the human interventions intensity in land use units was carried out based on the temporal extension of agricultural land development (agricultural land use), the rangeland condition assessment (rangeland land use) and the area extent of under influence (urban area and water resources). The results of land use studies identified that Rangeland lands cover 77.2 percent and agriculture, urban area and water resources land uses accounted for 21.5, 1.1 and 0.2 percent, respectively. The results of the intervention trend indicated that the trend continues from normal conditions to the replacement by technogenous structures. This trend has revealed growth of agricultural activity in rangeland and as well as the tremendous loss in cropland in uneven urban and industrial growth. The results of the study show the compatibility between the three variables of anthropogenic transformation; ie, the type, intensity and trend.

کلیدواژه‌ها [English]

  • Intervention trend
  • Intensity of intervention
  • Land function
  • Land use
  • Agriculture
[1] Alexander, P., Rounsevell, M. D., Dislich, C., Dodson, J. R., Engström, K., & Moran, D. (2015). Drivers for global agricultural land use change: The nexus of diet, population, yield and bioenergy. Global Environmental Change, 35, 138-147.
[2] Anderson, J. R. (1976). A land use and land cover classification system for use with remote sensor data (Vol. 964). US Government Printing Office.
[3] Barnosky, A. D., Hadly, E. A., Bascompte, J., Berlow, E. L., Brown, J. H., Fortelius, M., ... & Smith, A. B. (2012). Approaching a state shift in Earth’s biosphere. Nature, 486(7401), 52-58.
[4] CEC. (1995). CORINE - Guide Technique. Commission of the European Communities, Brussels.
[5] Di Gregorio, A. (2005). Land cover classification system: classification concepts and user manual: LCCS (Vol. 2). Food & Agriculture Org.
[6] Dirmeyer, P. A., Niyogi, D., de Noblet-Ducoudré, N., Dickinson, R. E., & Snyder, P. K. (2010). Impacts of land use change on climate. Int. J. Climatol, 30(13), 1905-1907.
[7] Dissanayake, D. M. S. L. B. (2020). Land use change and its impacts on land surface temperature in Galle City, Sri Lanka. Climate, 8(5), 65.
[8] ECE-UN (. (1989). Proposed ECE Standard International Classification of Land Use.
[9] Ellis, E. C., Kaplan, J. O., Fuller, D. Q., Vavrus, S., Goldewijk, K. K., & Verburg, P. H. (2013). Used planet: A global history. Proceedings of the National Academy of Sciences, 110(20), 7978-7985.
[10] Feddema, J. J., Oleson, K. W., Bonan, G. B., Mearns, L. O., Buja, L. E., Meehl, G. A., & Washington, W. M. (2005). The importance of land-cover change in simulating future climates. Science, 310(5754), 1674-1678.
[11] Fisher, P., Comber, A. J., & Wadsworth, R. (2005). Land use and land cover: contradiction or complement. Re-presenting GIS, 85-98.
[12] Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F.S., Coe, M.T., Daily, G.C., Gibbs, H.K. and Helkowski, J.H. (2005). Global consequences of land use. Science, 309(5734), 570-574.
[13] Ghorbani, A., & Pakravan, M. (2013). Land use mapping using visual vs. digital image interpretation of TM and Google earth derived imagery in Shrivan-Darasi watershed (Northwest of Iran). European Journal of Experimental Biology, 3(1), 576-582.
[14] Gomarasca, M. A. (2009). Land use/land cover classification systems. In Basics of Geomatics (pp. 561-598). Springer, Dordrecht.
[15] Jansen, L. J., & Di Gregorio, A. (2003). Land-use data collection using the “land cover classification system”: results from a case study in Kenya. Land Use Policy, 20(2), 131-148.
[16] Kaplan, J. O., Krumhardt, K. M., Ellis, E. C., Ruddiman, W. F., Lemmen, C., & Goldewijk, K. K. (2011). Holocene carbon emissions as a result of anthropogenic land cover change. The Holocene, 21(5), 775-791.
[17] Kareiva, P., Watts, S., McDonald, R., & Boucher, T. (2007). Domesticated nature: shaping landscapes and ecosystems for human welfare. Science, 316(5833), 1866-1869.
[18] Karimi, S. (2019). Determine the Beginning and End of the Thermal Seasons with the Scrutiny Approach of the Natural Seasons (Case Study: Different Areas of Kerman Province). Journal of Natural Environmental Hazards, 7(18), 147-168.
[19] Klein Goldewijk, K., Beusen, A., Van Drecht, G., & De Vos, M. (2011). The HYDE 3.1 spatially explicit database of human‐induced global land‐use change over the past 12,000 years. Global Ecology and Biogeography, 20(1), 73-86.
[20] Krausmann, F., Erb, K. H., Gingrich, S., Haberl, H., Bondeau, A., Gaube, V., Lauk, C., Plutzar, C. and Searchinger, T.D. (2013). Global human appropriation of net primary production doubled in the 20th century. Proceedings of the national academy of sciences, 110(25), 10324-10329.
[21] Kuemmerle, T., Erb, K., Meyfroidt, P., Müller, D., Verburg, P. H., Estel, S., & Reenberg, A. (2013). Challenges and opportunities in mapping land use intensity globally. Current opinion in environmental sustainability, 5(5), 484-493.
[22] Liu, J., Liu, M., Zhuang, D., Zhang, Z., & Deng, X. (2003). Study on spatial pattern of land-use change in China during 1995–2000. Science in China Series D: Earth Sciences, 46(4), 373-384.
[23] Liu, J., Zhang, Z., Xu, X., Kuang, W., Zhou, W., Zhang, S., Li, R., Yan, C., Yu, D., Wu, S. and Jiang, N. (2010). Spatial patterns and driving forces of land use change in China during the early 21st century. Journal of Geographical Sciences, 20(4), 483-494.
[24] Liu, J., Zhang, C., Kou, L., & Zhou, Q. (2017). Effects of climate and land use changes on water resources in the Taoer River. Advances in Meteorology, 2017.
[25] Mainguet, M. (1986). The wind and desertification processes in the Saharo-Sahelian and Sahelian regions. In Physics of desertification (pp. 210-240). Springer, Dordrecht.
[26] Mashhadi, N. (2019). Land use change in sand sources as an agent on changing wind erosion process (case study: Damghan erg. Geography (Regional Planning), 9(3), 61-79.
[27] Mashhadi, N., Karimpour reihan, M. (2021). Analysis of geomorphologic- anthropogenic changes in sources of Sand and dust storms (Case study: Damghan Erg). Scientific-Research Quarterly of New Attitudes in Human Geography, 13 (1), pp. 100-111. (In Persian).
[28] Milanova, E. V., & Kushlin, A. V. (1993). World map of present-day landscapes: An explanatory note (No. 551.4 912.15514). Programa de las Naciones Unidas para el Medio Ambiente. United Nations Environment Programme.
[29] Mosca, N., Di Gregorio, A., Henry, M., Jalal, R., & Blonda, P. (2020). Object-Based Similarity Assessment Using Land Cover Meta-Language (LCML): Concept, Challenges, and Implementation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 3790-3805.
[30] Musa, M. K., & Odera, P. A. (2015). Land use land cover changes and their effects on agricultural land a case study of Kiambu County Kenya.
[31] Mucher, C., Stomph, T. J., & Fresco, L. O. (1993). Proposal for a global land use classification. FAO/ITC/WAU.
[32] Oldfield, F., & Dearing, J. A. (2003). The role of human activities in past environmental change. In Paleoclimate, global change and the future (pp. 143-162). Springer, Berlin, Heidelberg.
[33] Scanlon, B. R., Reedy, R. C., Stonestrom, D. A., Prudic, D. E., & Dennehy, K. F. (2005). Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Global Change Biology, 11(10), 1577-1593.
[34] Syvitski, J. P., & Kettner, A. (2011). Sediment flux and the Anthropocene. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1938), 957-975.
[35] UNEP/FAO. (1994). Report of the UNEP/FAO Expert Meeting on Harmonizing Land Cover and Land Use Classifications.
[36] Veldkamp, A., & Lambin, E. F. (2001). Predicting land-use change. Agriculture, ecosystems & environment, 85(1-3), 1-6.
[37] Verburg, P. H., Neumann, K., & Nol, L. (2011). Challenges in using land use and land cover data for global change studies. Global change biology, 17(2), 974-989.
[38] Vlek, L.G. and Braimoh, A.K. eds. (2007). Land use and soil resources. Springer.
[39] Walker, B., & Steffen, W. (1997). An overview of the implications of global change for natural and managed terrestrial ecosystems. Conservation ecology, 1(2).
[40] Walker, B., Steffen, W., Canadell, J., & Ingram, J. (Eds.). (1999). The terrestrial biosphere and global change: implications for natural and managed ecosystems (Vol. 4). Cambridge University Press.
[41] Wu, J. (2013). Landscape sustainability science: ecosystem services and human well-being in changing landscapes. Landscape ecology, 28(6), 999-1023.
[42] Zhai, R., Zhang, C., Li, W., Zhang, X., & Li, X. (2020). Evaluation of driving forces of land use and land cover change in New England area by a mixed method. ISPRS International Journal of Geo-Information, 9(6), 350.
[43] Zalasiewicz, J., Waters, C. and Williams, M. (2020). The anthropocene. In Geologic Ti