نشریه علمی - پژوهشی مرتع و آبخیزداری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته دکتری دانشکده منابع طبیعی دانشگاه تهران، کرج، ایران.

2 استاد دانشکده منابع طبیعی دانشگاه تهران، کرج، ایران.

3 استادیار پژوهشی، بخش تحقیقات منابع طبیعی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان قم، سازمان تحقیقات، آموزش و ترویج کشاورزی قم. قم. ایران.

10.22059/jrwm.2021.305516.1515

چکیده

اهداف اصلی این پژوهش تهیه نقشه پیش‌بینی رویشگاه بالقوه گونه Agropyron intermedium، با استفاده از مدل Maxent، یافتن عوامل مهم تأثیرگذار در استقرار و توزیع این گونه و گرایش ترجیحی گونة مورد نظر نسبت به عوامل محیطی بوده است. برای این منظور، اطلاعات وضعیت سایت شامل توپوگرافی، آب و هوا، زمین شناسی و خاک، تصاویر ماهواره‌ای، مدل ارتفاع دیجیتال(DEM) ، نقشه زمین شناسی و داده‌های اقلیمی (از ایستگاه‌های مرتبط) تهیه شدند. بعد از این مرحله، نمونه‌برداری از خاک و پوشش گیاهی انجام شد و نمونه‌های خاک به آزمایشگاه منتقل شدند. در آزمایشگاه نمونه‌های خاک شامل آهک، ماده آلی، بافت خاک، اسیدیته، هدایت الکتریکی و درصد سنگ و سنگریزه اندازه‌گیری شدند. برای تجزیه و تحلیل اطلاعات و ارائه نقشه متغیرهای محیطی از روش‌های زمین‌آمار و برای ارائه نقشه پیش‌بینی از مدل Maxent استفاده شد. مقدار ضریب کاپا حاکی از آن است که مدل Maxent رویشگاه گونة A. intermedium را در سطح بسیارخوب (85/0=kappa) پیش‌بینی کرده است. همچنین دقت طبقه بندی نقشه‌های زیستگاه پیش بینی شده در مدل Maxent با توجه به تحلیل منطقه زیر منحنی ( 771/0= AUC) قابل قبول است. نتایج نشان داد که متغیرهای توپوگرافی و رس خاک در حضور و پراکنش گونه A. intermedium بیشترین تأثیر را دارد و افزایش آهک و هدایتت الکتریکی تأثیر منفی بر حضور این گونه دارد.

کلیدواژه‌ها

عنوان مقاله [English]

Agropyron intermedium species distribution modeling sites with maximum entropy method species (case study: rangeland of Taleghan Miany)

نویسندگان [English]

  • Mahboobeh Abasi 1
  • Mohammad Ali Zare Chahouki 2
  • Hossein Bagheri 3

1 Ph.D. Graduated of Rangeland Management, University of Agricultural Sciences and Natural Resources, Tehran.

2 Professor, Faculty of Natural Resources, University of Tehran, Karaj Iran.

3 Research Assistant, Forests and Rangelands Research Department, Qom Agricultural & Natural Resources Research & Education Center, AREEO, Qom, Iran.

چکیده [English]

The main objectives of this study were to prepare a prediction map of the potential habitat of Agropyron intermedium and Find important factors influencing the establishment and distribution of this species and the preferred tendency of the species was relative to environmental factors Using the Maxent model. For modeling, region condition information was prepared including topography, climate, geology and soil, satellite images, digital elevation model (DEM), geology map, and climatology data. Then soil and plants sampling was performed and Soil samples were transferred to the lab. Soil properties were measured including gravel, pH, EC, lime, organic matter, N, K, P, sand, clay, and silt in the laboratory. Geostatistical methods were used for data analysis and mapping of environmental variables and the Maxent model was used for prediction maps. Kappa coefficient indicates that the Maxent model predicted A. intermedium habitat at a very good level (kappa = 0.85). Also, the accuracy of the classification of habitat maps predicted in the Maxent model is acceptable according to the analysis of the area under the curve (AUC = 0.771). The results showed that topographic variables and clay soil factor in the occurrence and distribution of A. intermedium has the greatest effect and increasing lime and ec have a negative influence on the presence of this species. A. intermedium is a desirable species that in addition to being used in creating hand-planted pastures, it is very important in improving and developing rangelands, especially in cold regions. Therefore, maintaining genetic and scientific,

کلیدواژه‌ها [English]

  • Maxent model
  • Potential habitat
  • Geostatistical
  • Agropyron intermedium
 [1] Abbasi, M and Zare Chahouki, M.A., (2014). Modeling of potential habitat for Stipa barbata and Agropyron intermedium species using artificial neural network model in rangeland of Central Taleghan. Iranian Journal of Renewable Natural Resources Researches, 2(16), 46-56.
 [2] Abbasi, M and Zare Chahouki., M. A. (2016). Habitat suitability modeling for Agropyron intermedium species using Ecological Niche Factor Analysis (case study: rangeland of Taleghan miany). Journal of Plant Research, 29(4), 819-832. (In Persian).
[3] Alborz Meteorology Office, I.R. of Iran Meteorology Organization. http://www.alborz-met.ir/. (15/08/2020). 
[4] Allen S.A. (1989). Chemical analysis of ecological materials, University of Blackwell, London, 120pp.
[5] Alvani Nezhad, S. (1999). Investigation of effective factors for distribution of Amygdalus scoparia in two regions of Fars province, Master of Science Dissertation, Department of Forestry, Faculty of Natural Resources, Tarbiat Modares University, Tehran, 134p (in Persion).
[6] Anderson, R.P., Lew, D. and Peterson, A.T. (2003). Evaluating predictive models of species distributions: criteria for selecting optimal models. Journal of Ecological Modelling, 162, 211–232.
[7] Azarnivand, H. and Zare Chahouki, M.A. (2008). Range Improvement. Tehran University Press. 354p. (In Persian).
[8] Azarnivand, H., Jafari, M., Moghadam, M. and Zare Chahouki, M.A. (2011). Effect of soil properties and elevation changes in the distribution of two species of Artemisia (Case Study: Vardavrd, Semnan and Garmsar Rangeland). Iranian Journal of Range and Watershed Management, 56(1-2), 93-100.
[9] Beck, P.S.A., Kalmbach, E., Joly, D., Stien, A. and Nilsen, L. (2005). Modelling local distribution of an Arctic dwarf shrub indicates an important role for remote sensing of snow cover. Journal of Remote Sensing of Environment, 98, 110-121.
[10] Berger, A.L., Della Pietra, S.A. and Della Pietra, V.J. (1996). A maximum entropy approach to natural language processing. Journal of Comput Linguist, 22(1), 39-71.
[11] Boral, D. and Moktan, S. (2021). Predictive distribution modeling of Swertia bimaculata in Darjeeling-Sikkim Eastern Himalaya using MaxEnt: current and future scenarios. Journal of Ecological Processes, 1-16. https://doi.org/10.1186/s13717-021-00294-5.
[12] Chaichi, M. R., Mohseni Saravi, M. and Malekian, A. (2004). Trampling Effects of Livestock Grazing on Soil Physical Properties and Range Vegetation Cover, Iranian J.Natural Res, 56 (4), 491-508.
[13] Davarpanah, G., Fattahi, M., Golmohammadi, M., Aghajanlu, F., Hajighaderi T., Tarasi, J. (2009). Investigation on effective factors influencing distribution of wild pistachio species at Zanjan province. Iranian Journal of Forest and Poplar Research, 1(17), 33-50.
 [14] Downie, A.L., Numers, Mv. and Boström, Ch. (2013). Influence of model selection on the predicted distribution of the seagrass Zostera marina. Journal of Estuarine, Coastal and Shelf Science, 121-122, 8-19.
[15] Elith, J., Graham, C.H., Anderson, R.P., Dudk, M., Ferrier, S., Guisan, A. and et al. (2006). Novel methods improve prediction of species' distributions from occurrence data. Journal of Echography, 29, 129–151.
[16] Erfanian, M.B., Sagharyan, M., Memariani, F. and Ejtehadi, H. (2021). Predicting range shifts of three endangered endemic plants of the Khorassan‑Kopet Dagh floristic province under global change. Journal of Scientific Reports, 11(9159), 10-13. https://doi.org/10.1038/s41598-021-88577-x.
[17] Gastoَn, A., Juan, I. and Garcia, V. (2011). Modelling species distributions with penalized logistic regressions: A comparison with maximum entropy models. Journal of Ecological Modelling, 222, 2037-2041.
[18] Ghanbari, F., Shataee Joybari Sh., Azim Mohseni, M., Habashi, H. (2011). Application of topography and logistic regression in forest type spatial prediction. Iranian Journal of Application of Topography and Logistic Regression in Forest Type Spatial Prediction, 1(19), 27-41.
[19] Graham, C.H., Ferrier, S., Huettman, F., Moritz, C. and Peterson, A.T. (2004). New developments in museum-based informatics and applications in biodiversity analysis. Journal of Trends Ecol. 19(9), 497–503.
[20] Guisan, A., Edwards, T.C. and Hastie, T. (2002). Generalized linear and generalized additive models in studies of species distributions: setting the scene. Journal of Ecological Modelling, 157, 89-100.
[21] Gurgin Karaji, M., Karami, P., Shokri, M. and Safaian, N. (2006). Investigation relationship between some important species and physical and chemical soil factors (case study: Farhadabad sub catchment in Kurdistan;s Saral rangelands). Iranian Journal of Pajouhesh & Sazandegi, 73, 126-132.
[22] Hasani Pak, A.A. (1998). Geostatistical. Tehran University Press, 180p.
[23] Hoffman, D.J., Narumalani, S., Mishra, D.R., Merani, P. and Wilson, R.J. (2008). Predicting Potential Occurrence and Spread of Invasive Plant Species along the North Platte River, Nebraska. Journal of Invasive Plant Science and Management, 1, 359-367.
[24] Hosseini. S.Z., Kappas, M., Zare Chahouki, M.A., Gerold, G., Erasni, D. and Rafiei Emem, A. (2013). Modelling potential habitats for Artemisia sieberi and Artemisia aucheri in Poshtkouh area, central Iran using the maximum entropy model and geostatistics. Journal of Ecological Informatics, 18, 61-68.
[25] Jackson M.L. (1967). Soil chemical analysis, Prentice Hall, New Delhi, PhD thesis, 320 pp.
[26] Jafarian Z., Arzani H., Jafari M., Zahedi GH., Azarnivand H. (2012). Mapping Spatial Prediction of Plant Species Using Logistic Regression (Case Study: in Rineh Rangeland; Damavand Mountain). Iranian Journal of Natural Geography Researches, 79, 1-18.
[27] Kia, F., Tavili, A. and Javadi, S.A. (2011). Relationship between some rangeland species distribution and environmental factors in Chahar-Bagh region of Golestan province. Journal of Rangeland, 5(3), 292-301 (In Persian).
[28] Kumar, S., and Stohlgren, J.T. (2009). Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledoni. Journal of Ecology and Natural Environment, 1 (4), 094-098.
[29] Landis, J.R. and Koch, G.G. (1977). The measurement of observer agreement for categorical data. Journal of Biometrics, 33, 159–174.
[30] Lemke, D., Hulme, P.E., Brown, J.A. and Tadesse, W. (2011). Distribution modelling of Japanese honeysuckle (Lonicera japonica) invasion in the Cumberland Plateau and Mountain Region, USA. Journal of Forest Ecology and Management, 262(2), 139-149.
[31] Miller, J. (2005). Incorporating Spatial Dependence in Predictive Vegetation Models: Residual Interpolation Methods. The Professional Geographer, 57(2), 169 184.
[32] Miller, J. and Franklin J. (2002). Modeling the distribution of four vegetation alliances using generalized linear models and classification trees with spatial dependence. Journal of Ecological Modelling, 157(2-3), 227-247.
[33] Negga, H. E. (2007). Predictive Modelling of Amphibian Distribution Using Ecological Survey Data: a case study of Central Portugal, Master thesis, International Institute for Geo-Information Science and Earth Observation, Enschede, The Netherlands.
[34] Nelson, W. and Sommers, L. (1982). Total carbon, organic carbon and organic matter. In: Page, AL, Keeny, DR, (eds). Methods of Soil Analysis. Part 2. Chemical and microbiological, 535-581.
[35] Pearson, R.G. (2007). Species’ Distribution Modeling for Conservation Educators and Practitioners. Synthesis. American Museum of Natural History. Available at http://ncep.amnh.org.
[36] Peterson, A.T., Papes, M. and Eaton, M. (2007). Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Journal of Echography, 30, 550_56.
[37] Phillips, S. J., Anderson, R.P. and Schapire, R.E. (2006). Maximum entropy modeling of species geographic distributions. Journal of Ecological Modelling, 190, 231–259.
[38] Phillips, S.J. and Dudik, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Journal of Echography, 31, 161-175.
[39] Piry Sahragard, H., Azarnivand, H., Zare Chahouki, M.A., Arzani, H. and Qumi, S. (2011). Study of Effective Environmental Factors on Distribution of Plant Communities in Middle Taleghan Basin. Journal of Range and Watershed Management, Iranian Journal of Natural Resources, 64, (1): 1-12.
[40] Rhoades, J. D., D. L. Corwin and S. M. Lesch. (1999). Geospatial measurement of soil electrical conductivity to assess soil salinity and diffuse salt loading from irrigation, 197-215.
[41] Rota, T.Ch., Fletcher, J.R., Jason, M.E. and Hutto, L.R. (2011). Does accounting for imperfect detection improve species distribution models? Journal of Echography, 34, 659-670.
[42] Shojaee, M., Kiani,, B., Setoodeh, A. and Azimzadeh, H.R. (2017). Investigating the role of topographic factors on spatial distribution of plant species using logistic regression (Case study: Baghe-Shadi forest, Harat, Yazd). Iranian Journal of Arid Biome Scientific and Research, 7(1), 1-13.
[43] Smith, T.M., Shugart, H.H., Woodward, F.I. and Burtin, P.J. (1993). Plant functional types. In Solomon, A.M. and H.H. Shugart., editors, Vegetation dynamics and global change. New York: Chapman & Hall, 272-292.
[44] Sweet, J.A. (1988). Measuring the accuracy of diagnostic systems. Journal of Science, 240: 1285-1293.
[45] Tang, X., Yuan, Y., Li, X. and Zhang, J. (2020). Maximum Entropy Modeling to Predict the Impact of Climate Change on Pine Wilt Disease in China. Journal of Frontiers in Plant Science, 12, 1-14.
[46] Verbyla, D.L. and Litvaitis, J.A. (1989). Resampling methods for evaluation of classification accuracy of wildlife habitat models. Journal of Environnemental Management, 13, 783-787.
[47] Villers-Ruiz, L., Trejo-Vazquez, I. and Lipez-Blanco, J. (2003). Dry vegetation in relation to the physical environment in the Baja California Peninsula, Mexico. Journal of Vegetation Science, 14, 517-524.
[48] Yan, H., Feng, L., Zhao, Y., Feng, L., Wu, D., and Zhu, C. (2020). Prediction of the spatial distribution of Alternanthera philoxeroides in China based on ArcGIS and MaxEnt. Journal of Global Ecology Conservation, 21, e00856. doi: 10.1016/j.gecco.2019. e00856.
[49] Zare, Chahouki, M., Nodehi, R. and Tavili, A. (2011a). Investigation on relationship between plant diversity and environmental factors in Eshtehard rangelands. Iranian Journal of Arid Biome Scientific and Research, 1(2), 41-49.
[50] Zare, Chahouki, M.A., Ghomi, S. and Azarnivand, H. (2009). Relationship between vegetation diversity and environmental factors in Taleghan rangelands. Iranian Journal of Rangeland, 10(1), 171-180.
[51] Zare, Chahouki, M.A., Zarei, A. and Jafari, M. (2011b). Effective environmental factors on distribution of plant species (Case study: Donbalid rangelands of Taleghan). Iranian Journal of Watershed Management Research (Pajouhesh & Sazandegi), 1(94), 65-73.
[52] Zare Chahouki, M.A. and Abasi, M. (2016). Habitat suitability modeling for Thymus kotschyanus Boiss. Using ecological-niche factor analysis (case study: rangeland of middle Taleghan). Iranian Journal of Medicinal and Aromatic Plants 32 (4), 561-573.
[53] Zare Chahouki, A., Abasi, M. and Azarnivand, H. (2014). Spatial distribution modeling for Agropyron intermedium and Stipa barbata species habitat using binary logistic regression (case study: rangeland of Taleghan miany). Iranian Journal of Plant Ecosystem Conservation, 2(4), 47-60.
[54] Zare Chahouki, A and Abasi, M. (2017). Habitat suitability modeling Stipa barbata species using Ecological Niche Factor Analysis (case study: Taleghan Rangelands). Iranian Journal of natural ecosystems of Iran, 7(4), 26. 1-16.
[55] Zare Chahouki, A., Abasi, M. and Azarnivand, H. (2015). Preparation Map the spatial distribution some of soil properties using Geostatistics (Case Study: Taleghan miany rangeland). Iranian Journal of Rangeland, 2(2), 1-16.
 [56] Zare Chahouki, A., Abasi, M. and Azarnivand, H. (2018). Prediction potential habitat of Stipa barbata species using maximum entropy model (Case Study: Taleghan Miany rangelands). Iranian Journal of Rangeland, 12(1), 35-47.
[57] Zhou, Y., Zhang, Z., Zhu, B., Cheng, X., Yang, L., Gao, M. and Kong, R., (2021). MaxEnt Modeling Based on CMIP6 Models to Project Potential Suitable Zones for Cunninghamia lanceolata in China. Journal of Forests, 1-20. doi.org/10.3390/f12060752.