نشریه علمی - پژوهشی مرتع و آبخیزداری

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مرتعداری، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

10.22059/jrwm.2023.360593.1711

چکیده

در مراتعی که مورد برداشت زغال‌سنگ قرار دارند انباشتی از باطله‌ها وجود دارد که در طی زمان گیاهان مرتعی بر روی آنها مستقر می‌شوند. مطالعه تغییرات گیاهی به منظور مدیریت و احیاء این باطله‌ها اهمیت دارد. در این تحقیق چگونگی تغییرات پوشش گیاهان مرتعی بر روی باطله‌های زغال‌سنگ پس از گذشت 10 سال مورد بررسی قرار گرفت. در این پژوهش سه باطله زغال سنگ که 20 تا 30 سال از رهاسازی آنها گذشته بود در بخشی از معادن منطقه کارمزد در شهرستان سوادکوه استان مازندران مطالعه شدند. نمونه‌گیری پوشش گیاهی شامل برآورد درصد تاج پوشش در پلات‌های یک مترمربعی بوده که در سال 1391 و 1401 انجام شد. ترکیب پوشش گیاهی، گروه‌های کارکردی و شاخص‌های تنوع و غنا بین دو سال مورد مقایسه قرار گرفتند.
نتایج این تحقیق نشان داد که با گذشت 10 سال تغییراتی در ترکیب پوشش گیاهی و گروه‌های گیاهی اتفاق افتاد. برخی گونه‌های گیاهی حذف و گیاهان نوظهوری مشاهده شدند. با گذشت زمان، درصد تاج پوشش گونه‌هایBromus briziformis و Melica persica افزایش معنی‌دار و برای گونه Hordeum vulgare کاهش معنی‌دار مشاهده شد. تاج پوشش گیاهان یکساله و چندساله افزایش 28/35 و 19/46 درصد داشتند. میانگین درصد تاج پوشش گندمیان، پهن‌برگان علفی و گیاهان بوته‌ای با گذشت زمان افزایش معنی‌دار نشان دادند. نتایج آنالیز واریانس نشان داد که طی روند تغییرات پوشش گیاهی شاخص‌های تنوع و غنا به طور معنی‌داری بهبود یافتند. تغییرات پوشش گیاهی در این دوره ده ساله تحت تآثیر سن باطله‌ها قرار نگرفته است. به منظور تسریع پویایی گیاهی و کاهش اثرات منفی باطله‌ها به محیط اطراف توصیه می‌شود تا از روش‌های احیاء و گیاهانی در منطقه که دارای قدرت گیاه‌پالایی هستند استفاده شود.

کلیدواژه‌ها

عنوان مقاله [English]

Vegetation changes in rangelands with abandoned coal-waste dumps during a 10-year period

نویسندگان [English]

  • Jamshid Ghorbani
  • Nateq Lashkari Sanami

Department of Rangeland Management, Faculty of Natural Resources, Sari Agricultural Sciences and Natural Resources University, Iran

چکیده [English]

Background: Coal mining in rangelands accounts for a considerable amount of waste dumps that can be colonized by local plants over time. A thorough understanding of vegetation changes plays a key role in the management and restoration of such ecosystems.
Aim: This study aimed to assess the rangeland plant changes during 10 years on coal-waste dumps.
Materials and methods: This study was carried out on three coal-waste dumps which were abandoned between 20 and 30 years in Karmozd mines in Savadkoh County, Mazandaran Province. Vegetation sampling was done in 2012 and 2022, estimating the cover percentage of all species in each 1 m2 plot. Species composition, functional groups, and species richness and diversity were compared between the two years.
Results: Results showed changes in species composition and plant groups after 10 years. Some species were not found in 2022 while some new species were detected. The cover percentage of Bromus briziformis and Melica persica significantly increased but Hordeum vulgare was found to significantly decrease. The cover percentage of annuals and perennials significantly increased by 35.28% and 46.19%, respectively. Over the time, the cover percentage of grasses, forbs, and shrubs significantly increased. The results of ANOVA indicated a significant increase in species richness and diversity.
Conclusion: Vegetation changes during this period have not been affected by age of each dump since abandonment. Restoration treatments and plant species with phytoremediation potential are recommended to accelerate vegetation dynamics and reduce the consequences of coal-waste dump on the surrounding environment.

کلیدواژه‌ها [English]

  • Coal mine
  • Ecological niche
  • Mining
  • Plant dynamics
  • Restoration
Alday, J. G., Marrs, R. H., & Martínez‐Ruiz, C. (2011). Vegetation succession on reclaimed coal wastes in Spain: the influence of soil and environmental factors. Applied Vegetation Science, 14(1), 84-94. https://doi.org/10.1111/j.1654-109X.2010.01104.x.
Antwi, E. K., Boakye-Danquah, J., Asabere, S. B., Takeuchi, K., & Wiegleb, G. (2014). Land cover transformation in two post-mining landscapes subjected to different ages of reclamation since dumping of spoils. SpringerPlus3(1), 1-22. DOI: 10.1186/2193-1801-3-702.
Bharali, S., Paul, A., Khan, M. L., & Singha, L.B. (2011). Species diversity and community structure of a temperate mixed Rhododendron forest along an altitudinal gradient in West Siang District of Arunachal Pradesh, India. Nature and Science9(12), 125-140.
Calvino, C. I., Martinez, S. G., & Downie, S. R. (2008). The evolutionary history of Eryngium: rapid radiations, long distance dispersals and hybridizations. Molecular Phylogenetics and Evolution, 46(3), 1129-1150. https://doi.org/10.1016/j.ympev.2007.10.021
del Moral, R., & Wood, D. M. (1993). Early primary succession on the volcano Mount St. Helens. Journal of Vegetation Science, 4(2), 223-234. https://doi.org/10.2307/3236108.
Dovčiak, M., Frelich, L. E., & Reich, P. B. (2005). Pathways in old‐field succession to white pine: seed rain, shade, and climate effects. Ecological Monographs, 75(3), 363-378. https://doi.org/10.1890/03-0802.
Fakhimi, E. (2020). Impact of mining on variation of species diversity, richness and structure of vegetation cover (Case study: Copper mine in Dareh Zereshk, Yazd province, Iran). Journal of Range and Desert Research, 27(4), 772-781. https://dorl.net/dor/20.1001.1.20089996.2020.10.3.7.6.(In Persian).
Finkelman, R. B., Wolfe, A., & Hendryx, M. S. (2021). The future environmental and health impacts of coal. Energy Geoscience, 2(2), 99-112. https://doi.org/10.1016/j.engeos.2020.11.001.
Hodacova, D., & Prach, K. (2003). Spoil heaps from brown coal mining: technical reclamation versus spontaneous revegetation. Restoration Ecology, 11(3), 1-7. https://doi.org/10.1046/j.1526-100X.2003.00202.x.
Hosseini, S. M. (2016). Natural succession of vegetation in old coal waste of rangelands of Kiasar in Mazandaran province (M.Sc. Thesis of rangeland management, Sari Agricultural Sciences and Natural Resources University, Iran). (In Persian).
Huang, Y., Tian, F., Wang, Y., Wang, M., & Hu, Z. (2015). Effect of coal mining on vegetation disturbance and associated carbon loss. Environmental Earth Sciences, 73(5), 2329-2342. https://doi.org/10.1007/s12665-014-3584-z.
Jakovljević, M. D., Kostić, N. M., & Antić-Mladenović, S. (2003). The availability of base elements (Ca, Mg, Na, K) in some important soil types in Serbia. Zbornik Matice srpske za prirodne nauke, 104, 11-21. https://doi.org/10.2298/ZMSPN0304011J.
Kirmer, A., Tischew, S., Ozinga, W. A., Von Lampe, M., Baasch, A., & Van Groenendael, J. M. (2008). Importance of regional species pools and functional traits in colonization processes: predicting re‐colonization after large‐scale destruction of ecosystems. Journal of Applied Ecology, 45(5), 1523-1530. https://doi.org/10.1111/j.1365-2664.2008.01529.x.
Kompała-Bąba, A., Bierza, W., Błońska, A., Sierka, E., Magurno, F., Chmura, D., Besenyei, L., Radosz, Ł., & Woźniak, G. (2019). Vegetation diversity on coal mine spoil heaps–how important is the texture of the soil substrate?. Biologia, 74, 419-436. https://doi.org/10.2478/s11756-019-00218-x.
Kondratenko, L., Gura, D., Shaidullina, V., Rogulin, R., & Kondrashev, S. (2022). Restoration of vegetation around mining enterprises. Saudi Journal of Biological Sciences, 29(3), 1881-1886. https://doi.org/10.1016/j.sjbs.2021.10.034.
Krzysztofik, R., Dulias, R., Kantor-Pietraga, I., Spórna, T., & Dragan, W. (2020). Paths of urban planning in a post-mining area. A case study of a former sandpit in southern Poland. Land Use Policy, 99, p.104801. https://doi.org/10.1016/j.landusepol.2020.104801.
Lashgari, N., Ghorbani, J., Zali, S. H., & Vahabzadeh, G. (2016). Assessing the vegetation restoration potential
on coal mine waste (Case study: Karmozd Savadkoh mines, Mazandaran province). Journal of Environmental
Studies, 41
(4), 757-770. https://doi.org/10.22059/jes.2016.57130. (In Persian).
Lashgari, N., Ghorbani, J., Zali, S. H., & Vahabzadeh, G. (2017). Soil properties and level of heavy metals in
coal wastes and their association with plant establishment (Case study: coal mine of Karmozd Svadkoh, Mazandaran province). Journal of Natural Environment, 69(4), 1091-1108. https://doi.org/10.22059/jne.2017.127994.954. (In Persian).
Lashkari Sanami, N. (2022 a). Heavy metals uptake and tolerance capability in plants and biochar application for coal mine wastes reclamation (Doctoral dissertation in Rangeland Science, Sari Agricultural Sciences and Natural Resources University, Iran) (In Persian).
Lashkari Sanami, N., Ghorbani, J., Zali, S. H., & Vahabzadeh, G. (2022 b). Edaphic optimum niche for some pioneer rangeland plants in coal mine wastes in Karmozd mines, Mazandaran province. Journal of Rangeland, 16(1), 1-16. http://dorl.net/dor/20.1001.1.20080891.1401.16.1.14.6.(In Persian).
Lashkari Sanami, N., Ghorbani, J., Zali, S.H., & Vahabzadeh, G. (2022 c). Modelling the response of plants to physical and chemical properties of coal wastes in Karmozd coal mine, Mazandaran province. Journal of Plant Research, 35(4), 848-865. https://dorl.net/dor/20.1001.1.23832592.1401.35.4.11.1.(In Persian).
Li, T., Wu, M., Duan, C. & Li, S. (2022a). The effect of different restoration approaches on vegetation development in metal mines. Science of the Total Environment806, p.150626. https://doi.org/10.1016/j.scitotenv.2021.150626.
Li, T., Yang, H., Yang, X., Guo, Z., Fu, D., Liu, C. E., Li, S., Pan, Y., Zhao, Y., Xu, F., & Gao, Y. (2022b). Community assembly during vegetation succession after metal mining is driven by multiple processes with temporal variation. Ecology and Evolution, 12(5), p.e8882. https://doi.org/10.1002/ece3.8882.
Li, X. R., Zhou, H. Y., Wang, X. P., Zhu, Y. G., & O'conner, P.J. (2003). The effects of sand stabilization and revegetation on cryptogam species diversity and soil fertility in the Tengger Desert, Northern China. Plant and Soil, 251, 237-245. https://doi.org/10.1023/A:1023023702248.
Moreno-de las Heras, M., Nicolau, J. M., & Espigares, T. (2008). Vegetation succession in reclaimed coal-mining slopes in a Mediterranean-dry environment. Ecological Engineering, 34(2), 168-178. https://doi.org/10.1016/j.ecoleng.2008.07.017.
Namjooyan, R., Ghorbani, J., Heydari, G., & Vahab Zade, G. (2019). Presence of rangeland plant species in the seed bank of coal waste and surrounding rangelands in Karmozd-Savad kouh and Kiasar-Sari coal mines in Mazandaran province. Journal of Range and Watershed Management, 72(2), 587-596. https://doi.org/10.22059/jrwm.2019.286711.1406.(In Persian).
Novianti, V. (2013). Process of primary succession and its application on previously mined coal areas (Doctoral dissertation, Bandung (ID), Institut Teknologi Bandung).
Novianti, V., Marrs, R. H., Choesin, D. N., Iskandar, D. T., & Suprayogo, D. (2018). Natural regeneration on land degraded by coal mining in a tropical climate: Lessons for ecological restoration from Indonesia. Land Degradation and Development, 29(11), 4050-4060. https://doi.org/10.1002/ldr.3162.
Orlovsky, N. S., Japakova, U. N., Shulgina, I., & Volis, S. (2011). Comparative study of seed germination and growth of Kochia prostrata and Kochia scoparia under salinity. Journal of Arid Environments, 75(6), 532-537. https://doi.org/10.1016/j.jaridenv.2011.01.014.
Prach, K., Pysek, P., & Jarosik, V. (2007). Climate and pH as determinants of vegetation succession in Central European man-made habitats. Journal of Vegetation Science, 18(5), 701-710. https://doi.org/10.1111/j.1654-1103.2007.tb02584.x.
Rahmonov, O., Czajka, A., Nádudvari, Á., Fajer, M., Spórna, T., & Szypuła, B. (2022). Soil and vegetation development on coal-waste dump in Southern Poland. International Journal of Environmental Research and Public Health, 19(15), p.9167. https://doi.org/10.3390/ijerph19159167.
Rahmonov, O., Krzysztofik, R., Środek, D., & Smolarek-Lach, J. (2020). Vegetation-and environmental changes on non-reclaimed spoil heaps in Southern Poland. Biology, 9(7), p.164. https://doi.org/10.3390/biology9070164.
Roubickova, A., Mudrak, O., & Frouz, J. (2012). The effect of belowground herbivory by wireworms (Coleoptera: Elateridae) on performance of Calamagrostis epigejos (L) Roth in post-mining sites. European Journal of Soil Biology, 50, 51-55. https://doi.org/10.1016/j.ejsobi.2011.12.004.
Segura, C., Navarro, F. B., Jiménez, M. N., & Fernandez-Ondono, E. (2020). Implications of afforestation vs. secondary succession for soil properties under a semiarid climate. Science of the Total Environment, 704, p.135393. https://doi.org/10.1016/j.scitotenv.2019.135393
Tilman, D. (2004). Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proceedings of the National Academy of Sciences, 101(30), 10854-10861. https://doi.org/10.1073/pnas.0403458101.
Tischew, S., & Kirmer, A. (2007). Implementation of basic studies in the ecological restoration of surface‐mined land. Restoration Ecology, 15(2), 321-325. https://doi.org/10.1111/j.1526-100X.2007.00217.x.
Vaňková, J., & Kovář, P. (2004). Plant species diversity in the biotopes of unreclaimed industrial deposits as artificial islands in the landscape. In Natural Recovery of Human-made Deposits in Landscape. Edited by Kovář, P. Academia, Praha. 30–45.
Walker, L. R., & del Moral, R. (2003). Primary Succession and Ecosystem Rehabilitation. Cambridge University Press, Cambridge.
Więckol-Ryk, A., Pierzchała, Ł., Bauerek, A., & Krzemień, A. (2023). Minimising Coal Mining’s Impact on Biodiversity: Artificial Soils for Post-Mining Land Reclamation. Sustainability, 15(12), p 9707. https://doi.org/10.3390/su15129707.
Woźniak, G. (2010). Diversity of Vegetation on Coal-Mine Heaps of the Upper Silesia (Poland). Szafer Institute of Botany, Polish Academy of Sciences.