نشریه علمی - پژوهشی مرتع و آبخیزداری

نوع مقاله : مقاله پژوهشی

نویسندگان

مرکز تحقیقات بین المللی بیابان، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

10.22059/jrwm.2024.367755.1732

چکیده

فعالیت‌های معدنی یکی از مهمترین علل تخریب خاک در اثر ناپایدار ساختن ساختار فیزیکوشیمیایی خاک است. در این تحقیق از داده‌های کمی شاخص‌های پایداری خاک، برای ارزیابی اثر استخراج سولفات سدیم بر ویژگی‌های خاک و رفتار حفاظتی سطح زمین استفاده شد. روش تحقیق بر پایه، تغییرات شاخص‌های پایداری خاک شامل، اسیدیته، هدایت الکتریکی، سدیم قابل تبادل، نسبت جذب سدیم و نسبت کلسیم قابل تبادل به منیزیم برای سطوح طبیعی (خاک سطحی دست نخورده)، لایه جداسازی شده خاک سطحی (خاک جابجا شده) و لایه برداشت سولفات سدیم انجام شد. نتایج نشان داد که مقدار درصد سدیم قابل تبادل و نسبت کلسیم قابل تبادل به منیزیم در لایه خاک جابجا شده و لایه استخراج سولفات نسبت به خاک طبیعی کاهش یافته است. در حالیکه محتوای ماده آلی خاک، در تمام لایه‌ها تغییری نکرده‌است و مقدار هدایت الکتریکی در لایه استخراج سولفات از همه لایه‌ها بیشتر است. نتایج ارزش‌ داده‌‌های پایداری خاک نشان‌دهنده ناپایداری لایه خاک جابجا شده نسبت به دو لایه دیگر است. بر اساس نتایج ارائه شده، نشان داده شده است که پتانسیل ناپایداری خاک به دلیل استخراج سولفات سدیم افزایش می یابد.

کلیدواژه‌ها

عنوان مقاله [English]

Soil sustainability transformation analysis due to sodium sulfate extraction (Case study: South of Eyvankey city)

نویسندگان [English]

  • Azam Beigi
  • Naser Mashahadi
  • Majid Karimpourreihan

International Desert Research Center, University College of Agriculture and Natural Resources, University of Tehran. Karaj, Iran

چکیده [English]

Mining activities are one of the most persistent causes of soil degradation due to the destabilization of the physicochemical structure of the soil. In this research, quantitative data of soil stability indicators were used to assess the effect of sodium sulfate extraction on soil properties and protective behavior of the earth's surface. The research method was based on tranformations in soil stability indicators, namely, acidity (pH), electrical conductivity (EC), exchangeable sodium percentage (ESP) and sodium absorption ratio (SAR), for natural surfaces (undisturbed topsoil), stripped topsoil layer (displaced soil layer) and sodium sulfate extraction layer. The results show that the concentration of exchangeable sodium percentage and the exchangeable calcium to magnesium ratio in the layer of displaced soil and the extraction layer of sulfate is reduced compared to the natural soil. While the organic matter content of soils does not change in all layers, and the value of electrical conductivity in the sulfate extraction layer is higher than all layers. The results of the soil stability data value show the instability of the displaced soil layer compared to the other two layers. Based on the presented results, it has been shown that the soil instability potential increases due to sodium sulfate extraction.

کلیدواژه‌ها [English]

  • Displaced soil layer
  • Laboratory data
  • Mining
  • Organic matter
  • Soil stability index
Aderoju, D. O., & Festus, A. G. (2013). Influence of salinity on soil chemical properties and surrounding vegetation of Awe salt mining site, Nasarawa State, Nigeria. African Journal of Environmental Science and Technology, 7(12), 1070-1075.
Baddock, M. C., Ginoux, P., Bullard, J. E., & Gill, T. E. (2016). Do MODIS‐defined dust sources have a geomorphological signature? Geophysical Research Letters, 43(6), 2606-2613.
Baumgartl, T., & Horn, R. (1991). Effect of aggregate stability on soil compaction. Soil and Tillage Research, 19(2-3), 203-213.
Beigi, A., Karimpour, M., & Mashhadi, N., (2017). Effects of sodium sulfate exploitation on soil and wind erosion potential. MSc thesis. International Desert Research Center (IDRC), University of Tehran. (In Persian).
Bybordi; M. (1388). Soil Physics. Tehran University Publications. (In Persian).
Davies, J. (2017). The business case for soil. Nature, 543(7645), 309-311.
Craig, M. D., Hobbs, R. J., Grigg, A. H., Garkaklis, M. J., Grant, C. D., Fleming, P. A., & Hardy, G. E. S. J. (2010). Do thinning and burning sites revegetated after bauxite mining improve habitat for terrestrial vertebrates? Restoration Ecology, 18(3), 300-310.
De Ploey, J., & Poesen, J. (2020). Aggregate stability, runoff generation and interrill erosion. In Geomorphology and soils (pp. 99-120). Routledge.
Duan, Z., Song, K., Zhang, N., Zheng, L. C., Yan, X. S., & Zhang, M. M. (2024). Characteristics and mechanisms of soil structure damage under salt weathering. Soil and Tillage Research, 238, 106030.
Flatt, R. J., & Scherer, G. W. (2002). Hydration and crystallization pressure of sodium sulfate: a critical review. MRS Online Proceedings Library Archive, 712.
García-Orenes, F., Guerrero, C., Mataix-Solera, J., Navarro-Pedreño, J., Gómez, I., & Mataix-Beneyto, J. (2005). Factors controlling the aggregate stability and bulk density in two different degraded soils amended with biosolids. Soil and Tillage Research, 82(1), 65-76.
Ganjegunte, G. K., Wick, A. F., Stahl, P. D., & Vance, G. F. (2009). Accumulation and composition of total organic carbon in reclaimed coal mine lands. Land Degradation & Development, 20(2), 156-175.
Ghimire, R., & Khanal, B. R. (2020). Soil organic matter dynamics in semiarid agroecosystems transitioning to dryland. PeerJ, 8, e10199.
Gillette, D. A., Niemeyer, T. C., & Helm, P. J. (2001). Supply‐limited horizontal sand drift at an ephemerally crusted, unvegetated saline playa. Journal of Geophysical Research: Atmospheres, 106(D16), 18085-18098.
Hu, Y., Yu, Z., Fang, X., Zhang, W., Liu, J., & Zhao, F. (2020). Influence of mining and vegetation restoration on soil properties in the eastern margin of the Qinghai-Tibet Plateau. International Journal of Environmental Research and Public Health, 17(12), 4288.
KarimPourrihan, M., Mashhadhi, N., & Begi.A. (2021). Effect of Sodium Sulfate Extraction on Aeolian Process (A Case Study of South of Eyvankey City). Geography and Environmental Planning, 32(3), 47-66. (In Persian).
Lad, R. J., & Samant, J. S. (2015). Impact of bauxite mining on soil: a case study of bauxite mines at Udgiri, Dist-Kolhapur, Maharashtra State, India. International Research Journal of Environment Sciences, 4(2), 77-83.
Langbein, W. B. (1961). Salinity and hydrology of closed lakes: A study of the long-term balance between input and loss of salts in closed lakes (Vol. 412). US Government Print. Office.
Lei, K., Pan, H., & Lin, C. (2016). A landscape approach towards ecological restoration and sustainable development of mining areas. Ecological Engineering, 90, 320-325.
Sonter, L. J., Ali, S. H., & Watson, J. E. (2018). Mining and biodiversity: key issues and research needs in conservation science. Proceedings of the Royal Society B, 285(1892), 20181926.
Mabbutt, J. A. (1977). Desert landforms. Australian National University Press.
McBride, M. B. (1994). Environmental Chemistry of Soils Oxford Press. New York.
Moore, G. A. (2001). Soilguide (Soil guide): A handbook for understanding and managing agricultural soils. Bulletin, 4343, 381.
Munshower, F. F. (2018). Practical handbook of disturbed land revegetation. CRC Press.
Neal, J. T. (1965). Environmental setting and general surface characteristics of playas (Environmental setting and general surface characteristics of Playas in United States- geology, mineralogy, and hydrology). 1965, 1-29.
Nield, J. M., Bryant, R. G., Wiggs, G. F., King, J., Thomas, D. S., Eckardt, F. D., & Washington, R. (2015). The dynamism of salt crust patterns on playas. Geology, 43(1), 31-34.
Obalum, S. E., Chibuike, G. U., Peth, S., & Ouyang, Y. (2017). Soil organic matter as sole indicator of soil degradation. Environmental monitoring and assessment, 189, 1-19.
Rengasamy, P. (2006). World salinization with emphasis on Australia. Journal of experimental botany, 57(5), 1017-1023.
Prematuri, R., Turjaman, M., Sato, T., & Tawaraya, K. (2020). Post Bauxite Mining Land Soil Characteristics and Its Effects on the Growth of Falcataria moluccana (Miq.) Barneby & JW Grimes and Albizia saman (Jacq.) Merr. Applied and Environmental Soil Science, 2020, 1-8.
Romero Diaz, A., & Damian Ruiz Sinoga, J. (2010, May). Organic matter as an indicator of soil degradation. In EGU General Assembly Conference Abstracts (p. 7117).
Rosen, M. R. (1994). The importance of groundwater in playas: A review of playa classifications and. Paleoclimate and basin evolution of playa systems, 289, 1.
Schladweiler, B. K., Vance, G. F., Legg, D. E., Munn, L. C., & Haroian, R. (2004). Influence of variable topsoil replacement depths on soil chemical parameters within a coal mine in northeastern Wyoming, USA. Arid Land Research and Management, 18(4), 347-358.
Schroeder, P. D., Daniels, W. L., & Alley, M. M. (2010). Chemical and physical properties of reconstructed mineral sand mine soils in Southeastern Virginia. Soil science, 175(1), 2-9.
Shrestha, R. K., & Lal, R. (2011). Changes in physical and chemical properties of soil after surface mining and reclamation. Geoderma, 161(3-4), 168-176.
Sullivan, P. (1999). Sustainable soil management. Appropriate Technology Transfer for Rural Areas.
Tsui, N., Flatt, R. J., & Scherer, G. W. (2003). Crystallization damage by sodium sulfate. Journal of cultural heritage, 4(2), 109-115.
Van de Graaff, R., & Patterson, R. A. (2001, September). Explaining the mysteries of salinity, sodicity, SAR and ESP in on-site practice. In On-site ‘01 conference: advancing on-site wastewater systems, University of Armidale, New England, and September (pp. 25-27).
Xiang, H., Wang, Z., Mao, D., Zhang, J., Zhao, D., Zeng, Y., & Wu, B. (2021). Surface mining caused multiple ecosystem service losses in China. Journal of Environmental Management, 290, 112618.