نشریه علمی - پژوهشی مرتع و آبخیزداری

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی مرتع و آبخیزداری، دانشکده منابع طبیعی، دانشگاه لرستان، خرم‌آباد، ایران

10.22059/jrwm.2024.370851.1742

چکیده

در سال‌های اخیر، وضعیت سیلابی بودن سرشاخه‌های دز در استان لرستان افزایش‌یافته است. این امر به‌دلیل عوامل مختلفی ازجمله تغییراقلیم، کاهش پوشش گیاهی و افزایش ساخت‌وساز در حریم رودخانه‌ها است. در سال 1401، چندین بار در سرشاخه‌های دز در استان لرستان، سیل اتفاق افتاد. این سیل‌ها باعث خسارات جانی و مالی زیادی شدند. مدل‌های مفهومی جهانی بیش از دو دهه است که توسعه‌یافته‌اند و اثربخشی آن‌ها در شبیه‌سازی جریان رودخانه به اثبات رسیده است. در این مطالعه با استفاده از سه مدل روزانه (GR4J)، ماهانه (GR2M) و سالانه (GR1A) به شبیه‌سازی بارش-رواناب حوزه‌ آبخیز سیلاخور-رحیم‌آباد پرداخته شد. به‌منظور ارزیابی عملکرد مدل، در طول دوره‌های واسنجی و اعتبارسنجی، از معیارهای ارزیابی نش- ساتکلیف (Nash)، مجذور میانگین مربعات خطا (RMSE) و خطای کل در حجم جریان (Bias) استفاده شد. نتایج به‌دست‌آمده کاملاً معنی‌دار بودند. مدل GR1A در هر دو دوره‌ واسنجی و اعتبارسنجی به ترتیب دارای ضرایب نش 1/86 و 7/71 می‌باشد، لذا این مدل دارای عملکرد خیلی خوب می‌باشد. برای دو مدل GR2M و GR4J نیز ضرایب نش در دو دوره‌ی واسنجی و اعتبارسنجی به ترتیب برابر با 7/76، 2/70 و 4/61، 2/86 می‌باشند که بیانگر عملکرد خیلی‌خوب این مدل‌ها در شبیه‌سازی بارش-رواناب می‌باشد. لیکن با توجه به مطلوب بودن دو معیار ارزیابی، یعنی RMSE و Bias در مدل GR1A، این نتیجه حاصل می‌شود که مدل GR1A عملکرد بهتری در شبیه‌سازی بارش- رواناب داشت. درنهایت نتایج حاصل بیانگر این است که مدل‌های مفهومی GR4J، GR2M و GR1A مدل‌های مناسبی برای شبیه‌سازی جریان در حوزه‌ آبخیز سیلاخور-رحیم‌آباد می‌باشند.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation of the Performance of GR4J, GR2M, and GR1A Hydrological Models in Simulating Runoff in the Silakhor Watershed of Lorestan Province

نویسندگان [English]

  • Ali Haghizadeh
  • Lila Ghasemi

Department of Range and Watershed Management Engineering, Faculty of Natural Resources, Lorestan University, Khorramabad, Iran.

چکیده [English]

In recent years, the flood situation of headwaters of the Dez River in Lorestan Province has increased. This is due to various factors such as climate change, reduction of vegetation cover, and increase in construction in the riparian zone. In 2022, floods occurred several times in the Dez headwaters in Lorestan province. These floods caused significant damage to life and property. Global conceptual models have been developed for more than two decades and their effectiveness in simulating streamflow has been proven. In this study, simulation of runoff rainfall in Silakhor-Rahimabad watershed was done using three daily (GR4J), monthly (GR2M) and annual (GR1A) models. The Nash-Sutcliffe (Nash), root mean square error (RMSE), and bias criteria were used to evaluate the model performance during the calibration and validation periods. The obtained results were highly significant. The GR1A model has Nash coefficients of 86.1 and 71.7 in both calibration and validation periods, respectively, so this model has a very good performance. For the other two models, the GR2M model and the GR4J model, the Nash coefficients in the two calibration and validation periods are 76.7, 70.2 and 61.4, 86.2, respectively. These coefficients also indicate the good and very good performance of these models in rainfall-runoff simulation. However, considering the satisfactory performance of the two evaluation criteria, RMSE and Bias, in the GR1A model, it can be concluded that the GR1A model had a better performance in simulating rainfall-runoff. Finally, the obtained results indicate that the GR4J, GR2M and GR1A conceptual models are suitable models for simulating the streamflow in the Silakhor-Rahimabad watershed.

کلیدواژه‌ها [English]

  • streamflow modeling
  • Water resources management
  • Lorestan province
  • Rainfall-runoff model
Zarei, M., Ghanbarpour, M.R., Habibnezhad Roshan, M., & Shahedi, K. (2009). Streamflow Simulation Using IHACRES Rainfall-Runoff Model (Case Study: Kasilian Catchment). Jwmseir, 3 (8): 11-20. URL: http://jwmsei.ir/article-1-115-fa.html. (In Persian)
Zandi Dareh Gharibi, F., Khorsandi Kouhanestani, Z., Mozayan, M., & Arman, N. (2017). Technical Note: Evaluating the proficiency of GR2M and GR4J rainfall-runoff models in Darehtakht Basin runoff simulation. Jwem, 9(3), 360-370.
doi: 10.22092/ijwmse.2017.112377. (In Persian)
Amiri, A., Baharvand, S., & Rad, M. (2023). Evaluating the effectiveness of MISDc and GR4J rainfall-runoff models in simulating the daily discharge of ChamAnjir Khorramabad watershed. Integrated Watershed Management3(3), 84-94.
doi: 10.22034/iwm.2023.2009002.1098. (In Persian)
Teimouri, M., & Alvandi, E. (2021). Rainfall-Runoff Modeling Using the eWater Source in the Chel-Chay Watershed, the Province of Golestan. Watershed Management Research Journal34(1), 16-29. doi: 10.22092/wmej.2020.342744.1334. (In Persian)
Mostafazadeh, R., & Asgari, E. (2021). Performance assessment of GR4J rainfall-runoff model in daily flow simulation of Nirchai Watershed, Ardabil province. Irrigation and Water Engineering, 11(3), 79-95. doi: 10.22125/iwe.2021.128114. (In Persian)
Adnan, R. M., Petroselli, A., Heddam, S., Santos, C. A. G., & Kisi, O. (2021). Short term rainfall-runoff modelling using several machine learning methods and a conceptual event-based model. Stochastic Environmental Research and Risk Assessment, 35(3), 597-616.
Alizadeh A, Rajabi A, Shabanlou S, Yaghoubi B, & Yosefvand F. (2021). Modeling longterm rainfall-runoff time series through wavelet-weighted regularization extreme learning machine. Earth Sci Inf, 14(2):1047–63.
Alizadeh, A., Rajabi, A., Shabanlou, S., Yaghoubi, B., & Yosefvand, F. (2021). Modeling long-term rainfall-runoff time series through wavelet-weighted regularization extreme learning machine. Earth Science Informatics, 14, 1047-1063.
Bachir, S., Nouar, B., Hicham, C., Azzedine, H., & Larbi, D. (2015). Application of GR2M for rainfall-runoff modeling in Kébir Rhumel Watershed, north east of Algeria. World applied sciences journal33(10), 1623-1630.
Bergström, S., & Lindström, G. (2015). Interpretation of runoff processes in hydrological modelling—experience from the HBV approach. Hydrological Processes29(16), 3535-3545.
Bergström, S. (1992). The HBV model–its structure and its applications. SMHI RH, (4).
Beven, K. J., & Kirkby, M. J. (1976). Towards a simple, physically-based, variable contributing area model of catchment hydrology. University of Leeds.
Bouguerra, S. A., & Mansour, B. (2023). Rainfall-flow Modeling Using a Global Conceptual Model: Case of the Beni Bahdel Watershed (Northwest of Algeria). Journal of Water Management Modeling.
Boulariah, O., Longobardi, A., & Meddi, M. (2017). Statistical comparison of nonlinear rainfall-runoff models for simulation in Africa North-West semi-arid areas. In Proceedings of the 15th International Conference on Environment Science and Technology, Rhodes, Greece (Vol. 31).
Chang, T. K., Talei, A., Chua, L. H., & Alaghmand, S. (2018). The impact of training data sequence on the performance of neuro-fuzzy rainfall-runoff models with online learning. Water11(1), 52.
Chen, Y., Ren, Q., Huang, F., Xu, H., & Cluckie, I. (2011). Liuxihe model and its modeling to river basin flood. Journal of Hydrologic Engineering16(1), 33-50.
Croke, B., Andrew, F., Spate, J., & Cuddy. (2005). S. www.toolkit.net.au/ihacres.
Devia, G. K., Ganasri, B. P., & Dwarakish, G. S. (2015). A review on hydrological models. Aquatic procedia, 4, 1001-1007.
Dezetter, A., Girard, S., Paturel, J. E., Mahé, G., Ardoin-Bardin, S., & Servat, E. (2008). Simulation of runoff in West Africa: Is there a single data-model combination that produces the best simulation results? Journal of Hydrology354(1-4), 203-212.
Ditthakit, P., Pinthong, S., Salaeh, N., Binnui, F., Khwanchum, L., Kuriqi, A., ... & Pham, Q. B. (2021). Performance evaluation of a two-parameters monthly rainfall-runoff model in the Southern Basin of Thailand. Water, 13(9), 1226.
Ditthakit, P., Pinthong, S., Salaeh, N., Weekaew, J., Tran, T. T., & Pham, Q. B. (2023). Comparative study of machine learning methods and GR2M model for monthly runoff prediction. Ain Shams Engineering Journal14(4), 101941.
Fathi, M. M., Awadallah, A. G., Abdelbaki, A. M., & Haggag, M. (2019). A new Budyko framework extension using time series SARIMAX model. Journal of hydrology, 570, 827-838.
Flores, N., Rodríguez, R., Yépez, S., Osores, V., Rau, P., Rivera, D., & Balocchi, F. (2021). Comparison of three daily rainfall-runoff hydrological models using four evapotranspiration models in four small forested watersheds with different land cover in South-Central Chile. Water, 13(22), 3191.
Ha, S., Liu, D., & Mu, L. (2021). Prediction of Yangtze River streamflow based on deep learning neural network with El Niño–Southern Oscillation. Scientific reports, 11(1), 11738.
Hadour, A., Mahé, G., & Meddi, M. (2020). Watershed based hydrological evolution under climate change effect: An example from North Western Algeria. Journal of Hydrology: Regional Studies, 28, 100671.
Henriksen, H. J., Troldborg, L., Nyegaard, P., Sonnenborg, T. O., Refsgaard, J. C., & Madsen, B. (2003). Methodology for construction, calibration and validation of a national hydrological model for Denmark. Journal of Hydrology, 280(1-4), 52-71.
Herath, H. M. V. V., Chadalawada, J., & Babovic, V. (2021). Hydrologically informed machine learning for rainfall–runoff modelling: towards distributed modelling. Hydrology and Earth System Sciences, 25(8), 4373-4401.
Hu, C., Wu, Q., Li, H., Jian, S., Li, N., & Lou, Z. (2018). Deep learning with a long short-term memory networks approach for rainfall-runoff simulation. Water, 10(11), 1543.
Huo, W., Li, Z., Wang, J., Yao, C., Zhang, K., & Huang, Y. (2019). Multiple hydrological models’ comparison and an improved Bayesian model averaging approach for ensemble prediction over semi-humid regions. Stochastic environmental research and risk assessment, 33, 217-238.
Jaiswal, R. K., Ali, S., & Bharti, B. (2020). Comparative evaluation of conceptual and physical rainfall–runoff models. Applied water science, 10, 1-14.
Kabouya, M. (1990). Modélisation pluie-débit aux pas de temps mensuel et annuel en Algérie septentrionale (Doctoral dissertation, Paris 11).
Kratzert, F., Klotz, D., Shalev, G., Nevo, S., Klambauer, G., Nearing, G., & Hochreiter, S. (2020). Towards deep learning-based flood forecasting for ungauged basins (No. EGU2020-8932). Copernicus Meetings.
Lee, H., McIntyre, N., Wheater, H., & Young, A. (2005). Selection of conceptual models for regionalisation of the rainfall-runoff relationship. Journal of Hydrology312(1-4), 125-147.
Li, Z. J., & Zhang, K. (2008). Comparison of three GIS-based hydrological models. Journal of Hydrologic Engineering13(5), 364-370.
Liu, Y., Zhang, K., Li, Z., Liu, Z., Wang, J., & Huang, P. (2020). A hybrid runoff generation modelling framework based on spatial combination of three runoff generation schemes for semi-humid and semi-arid watersheds. Journal of Hydrology590, 125440.
Lyon, S. W., King, K., Polpanich, O. U., & Lacombe, G. (2017). Assessing hydrologic changes across the Lower Mekong Basin. Journal of Hydrology: Regional Studies, 12, 303-314.
Makhlouf, Z., & Michel, C. (1994). A two-parameter monthly water balance model for French watersheds. Journal of Hydrology162(3-4), 299-318.
Motovilov, Y. G., Gottschalk, L., Engeland, K., & Rodhe, A. (1999). Validation of a distributed hydrological model against spatial observations. Agricultural and Forest Meteorology98, 257-277.
Mouelhi, S., Michel, C., Perrin, C., & Andréassian, V. (2006). Stepwise development of a two-parameter monthly water balance model. Journal of Hydrology318(1-4), 200-214.
Mouelhi, S. (2003). Vers une chaîne cohérente de modèles pluie-débit conceptuels globaux aux pas de temps pluriannuel, annuel, mensuel et journalier (Doctoral dissertation, ENGREF Paris).
Nounangnonhou, T. C., Fifatin, F., Lokonon, B. E., Acakpovi, A., & Sanya, E. A. (2018). Modelling and prediction of Ouémé (Bénin) river flows by 2040 based on GR2M approach.
O’Connor, P., Murphy, C., Matthews, T., & Wilby, R. L. (2021). Reconstructed Monthly River flows for Irish catchments 1766–2016. Geoscience Data Journal8(1), 34-54.
Okkan, U., & Fistikoglu, O. (2014). Evaluating climate change effects on runoff by statistical downscaling and hydrological model GR2M. Theoretical and applied climatology117, 343-361.
Perrin, C., Michel, C., & Andréassian, V. (2003). Improvement of a parsimonious model for streamflow simulation. Journal of hydrology279(1-4), 275-289.
Rintis, H., Suyanto, & Setyoasri, Y. P. (2016). Rainfall-discharge simulation in Bah Bolon Catchment area by Mock method, NRECA method, and GR2M method. Applied Mechanics and Materials845, 24-29.
Rwasoka, D. T., Madamombe, C. E., Gumindoga, W., & Kabobah, A. T. (2014). Calibration, validation, parameter indentifiability and uncertainty analysis of a 2–parameter parsimonious monthly rainfall-runoff model in two catchments in Zimbabwe. Physics and Chemistry of the Earth, Parts A/B/C67, 36-46.
Schaefli, B., & Gupta, H. V. (2007). Do Nash values have value? Hydrological processes21, 2075-2080.
Song, X. M., Kong, F. Z., Zhan, C. S., & Han, J. W. (2012). Hybrid optimization rainfall-runoff simulation based on Xinanjiang model and artificial neural network. Journal of Hydrologic Engineering17(9), 1033-1041.
Sugawara, M. (1974). Tank model and its application to Bird Creek, Wollombi Brook, Bikin River, Kitsu River, Sanaga River, and Nam Mune. Research Notes of the National Research Center for Disaster Prevention12, 1-64.
Swain, J. B., & Patra, K. C. (2017). Streamflow estimation in ungauged catchments using regionalization techniques. Journal of Hydrology554, 420-433.
Todini, E. (1996). The ARNO rainfall—runoff model. Journal of hydrology175(1-4), 339-382.
Topalović, Ž., Todorović, A., & Plavšić, J. (2020). Evaluating the transferability of monthly water balance models under changing climate conditions. Hydrological Sciences Journal65(6), 928-950.
Venkatesan, E., & Mahindrakar, A. B. (2019). Forecasting floods using extreme gradient boosting-a new approach. International Journal of Civil Engineering and Technology10(2), 1336-1346.
Wang, W. C., Chau, K. W., Cheng, C. T., & Qiu, L. (2009). A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. Journal of hydrology374(3-4), 294-306.
Zamoum, S., & Souag-Gamane, D. (2019). Monthly streamflow estimation in ungauged catchments of northern Algeria using regionalization of conceptual model parameters. Arabian Journal of Geosciences12, 1-14.
Zhao, R. J., & Liu, X. R. (1995). The Xinanjiang model. Computer models of watershed hydrology., 215-232.