نشریه علمی - پژوهشی مرتع و آبخیزداری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مرتعداری، دانشکده منابع طبیعی، دانشگاه تربیت مدرس، تهران، ایران

2 گروه تحقیقات مرتع و جنگل، مرکز تحقیقات آموزش و کشاورزی و منابع طبیعی مازندران، ساری، ایران

3 گروه میکروبیولوژی خاک و گیاه، دانشکده آسیب شناسی گیاهی، دانشگاه کیل، کیل، آلمان

4 گروه اکولوژی، دانشگاه دبرسن، دبرسن، مجارستان

10.22059/jrwm.2024.373555.1754

چکیده

این پژوهش با هدف مقایسه اثر چرای دام بر بانک بذر و برخی از ویژگی‌های خاک در دو منطقه شور و غیر شور انجام گرفت. بدین منظور دو رویشگاه با درجه شوری متفاوت در استان گلستان انتخاب شد. در هر رویشگاه، دو سایت قرق (20 ساله) و چرا انتخاب و در هر سایت، 15 پلات 1مترمربعی مستقر گردید. نمونه‌های خاک از داخل پلات‌ها به وسیله اوگر در دو عمق 0-5 و 5-10 سانتی‌متر برداشت شد. شرایط محیطی پرتنش حاکم در رویشگاه شور باعث گردید، هیچ بذری از خاک این رویشگاه شور در گلخانه جوانه نزند. در رویشگاه غیر شور حذف چرای دام باعث افزایش معنی‌دار تراکم بانک بذر خاک شد. بالاترین تراکم، تنوع و غنا بانک بذر به ترتیب 50/1389 (مترمربع)، 24/1 و 2/5 در سایت قرق و در عمق 0-5 سانتی‌متری و کمترین مقدار به ترتیب 26/173 (مترمربع)، 29/0 و 46/1 در منطقه تحت چرا و در عمق 5-10 سانتی‌متری ثبت شد. اگر چه ویژگی‌های خاک از قبیل ماده آلی و نیتروژن تحت تاثیر معنی‌دار حذف چرای دام در منطقه غیر شور قرار نگرفت، برهم‌خوردگی خاک در سایت چرا شده احتمالا منجر به افزایش دمای سطح خاک و افزایش معنی‌دار تنفس برانگیخته در این منطقه گردید و همچنین از فعالیت آنزیم اوره آز کاسته شد. در منطقه شور، حذف چرای دام باعث شد ویژگی‌های خاک پاسخ‌های متفاوتی از خود نشان دهند. در سایت قرق اسیدیته و تنفس پایه به صورت معنی‌داری کاهش یافت.

کلیدواژه‌ها

عنوان مقاله [English]

Comparison of the effect of grazing removal on soil (seed bank, chemical and biological characteristics) in two saline and non-saline regions

نویسندگان [English]

  • Shadi Hazhir 1
  • Reza Erfanzadeh 1
  • Hassan Ghelichnia 2
  • Bahar Razavi 3
  • Peter Torok 4

1 Rangeland Management Department, Faculty of Natural Resources, Tarbiat Modares University, Iran.

2 Forest and Rangeland Research Department, Mazandaran Agricultural and Natural Resources Research Centre, AREEO, Sari, Iran

3 Institut of Phytopathology, Department of Soil- Plant- Microbiome, University of Kiel, Kiel, Germany

4 Department of Ecology, University of Debrecen,, Debrecen, Hungary

چکیده [English]

This research was conducted with the aim of comparing the effect of livestock grazing on the soil seed bank and some soil characteristics in two saline and non-saline regions. For this purpose, two habitats with different degrees of salinity were selected in Golestan province, Iran. In each region, two sites of grazed and ungrazed (20 years) were selected and 15 plots of 1 m2 were established at each site. Soil samples were taken from inside the plots by auger at two depths of 0-5 and 5-10 cm. The harsh environmental conditions prevailing in the saline habitat caused no seeds from the soil of this saline region to germinate in the greenhouse. In the non-saline habitat, the removal of livestock grazing caused a significant increase in the density of the soil seed bank. The highest density, diversity and richness of the seed bank were respectively 1389.50 (m2), 1.24 and 5.2 in ungrazed site at the depth of 0-5 cm, and the lowest values were respectively 173.26 (m2), 29.0 and 1.46 were recorded in the grazed site at the depth of 5-10 cm. Although the soil characteristics such as organic matter and nitrogen were not significantly affected by the removal of grazing in the non-saline area, soil disturbance in the grazed site probably led to an increase in soil surface temperature and a significant increase in substrate-induced respiration and urease enzyme activity was reduced. In the saline soil, the grazing removal caused the soil characteristics to show different responses. At the ungrazed site, pH and basal respiration decreased significantly

کلیدواژه‌ها [English]

  • Basal respiration
  • Livestock grazing
  • Salinity stress
  • Soil seed bank density
Aghajantabar, A. H., Saravi, M. M., Chaichi, M. R & Heydari, GH. (2015). Investigating the effect of grazing intensity on some physical and chemical characteristics of soil and vegetation in Vaz, Mazandaran province. Journal of Watershed Management Research, 6(11), 111-123: http://pec.gonbad.ac.ir/article-1-236-fa.html. (In Persian).
‏Amini, S., Ghadiri, H., Chen, C., & Marschner, P. (2016). Salt-affected soils, reclamation, carbon dynamics, and biochar: a review. Journal of Soils and Sediments16(1), 939-953.‏ ‏https://10.1007/s11368-015-1293-1.
Austin, A. T., Yahdjian, L., Stark, J. M., Belnap, J., Porporato, A., Norton, U., & Schaeffer, S. M. (2004). Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia141(5), 221-235.‏ https://doi: 10.1007/s00442-004-1519-1.
Bagherian, R., Sefidi, K., Keivan Behjou, F., Ashraf Soltani, A., & Behtari, B. (2020). Comparison of plant species diversity and evenness in different grazing levels southeastern slopes of Sabalan. Journal of Environmental Science and Technology22(2), 371-380. https://10.22034/JEST.2018.23103.3224.
Bai, L., Wang, C., Zang, S., Zhang, Y., Hao, Q., & Wu, Y. (2016). Remote sensing of soil alkalinity and salinity in the Wuyu’er-Shuangyang River Basin, Journal of Northeast China. Remote Sensing, 8(2), 163.‏ https://doi:10.3390/rs8020163.
Barroso, P., & Gortázar, C. (2024). The coexistence of wildlife and livestock. Journal of Animal Frontiers, 14(1), 5-12.
Bauder, T. A., Davis, J. G., Waskom, R. M., Cardon, G. E., Follett, R. H., Franklin, W. T., & Heil, R. D. (2004). Managing saline soils. Journal of Service in action; 7(1), 155-169.
Bertiller, M. B., & Ares, J. O. (2011). Does sheep selectivity along grazing paths negatively affect biological crusts and soil seed banks in arid shrublands? A case study in the Patagonian Monte, Argentina. Journal of Environmental Management92(8), 2091-2096.‏ https://doi.org/10.1016/j.jenvman.2011.03.027.
Bui, E. N. (2017). Causes of soil salinization, sodification, and alkalinization. Journal of Oxford Research Encyclopedia of Environmental Science.‏ https://doi.org/10.1093/acrefore/9780199389414.013.264.
Chaidefton, E., Thanos, C. A., Bergmeier, E., Kallimanis, A., & Dimopoulos, P. (2009). Seed bank composition and above-ground vegetation in response to grazing in sub-Mediterranean oak forests (NW Greece). Journal of Forest Ecology: Recent Advances in Plant Ecology, 5(4), 255-265. https://10.1007/s11258-008-9548-1.
Chakma, P., Hossain, M. M., & Rabbani, M. G. (2019). Effects of salinity stress on seed germination and seedling growth of tomato: Salinity stress on seed germination and seedling growth. Journal of the Bangladesh Agricultural University17(4), 490-499.‏ https://doi.org/10.3329/jbau.v17i4.44617.
Driessen, P., Deckers, J., Spaargaren, O., & Nachtergaele, F. (2000). Food and Agriculture Organization (FAO) (No. 94).‏
Erfanzadeh, R., & Hosseini Kahnuj, S. H. (2015). Soil seed bank characteristics in relation to distance from watering-points in arid ecosystems (case study: Kahnuj, Kerman Province). Journal of Ecopersia3(2), 975-986.‏ https://doi.org/20.1001.1.23222700.2015.3.2.7.3.
Erfanzadeh, R., & Motamedi, J. (2013). Effect of slope and vegetation on carbon sequestration in a semi-dry rangeland of western Iran, case study: Khanghah Sorkh, Urmia. Journal of Water and Soil27(4), 703-711.‏ https://doi.org/10.22067/JSW.V0I0.28088.
Erfanzadeh, R., Barzegaran, F., Saber Amoli, S., & Petillon, J. (2022). The effect of shrub community on understory soil seed bank with and without livestock grazing. Journal of Community Ecology23(1), 75-85.
Erfanzadeh, R., Shayesteh Palaye, A. A., & Ghelichnia, H. (2020). Shrub effects on germinable soil seed bank in overgrazed rangelands. Journal of Plant Ecology & Diversity13(2), 199-208.‏ https://doi.org/10.1080/17550874.2020.1718233.
Ghobadi, A., & Akhzari, D. (2020). Effects of Rangeland Exclosure on Chemical and Organic Properties of Soil (Case study: Gonbad Area. Journal of Environment Science Technology22(10), 221-233.‏ https://doi.org/ 10.22034/JEST.2021.32769.4059.
Grime, J. P. (2006). Plant strategies, vegetation processes, and ecosystem properties. John Wiley & Sons.‏
Hammam, A.A. & Mohamed, E.S. (2020). Mapping soil salinity in the East Nile Delta using several methodological approaches of salinity assessment. Journal of Remote Sensing and Space Sciences. 23(1), 125-131. https://doi.org/10.1016/j.ejrs.2018.11.002.
Hazhir, Sh., Erfanzadeh, R., Ghelichnia, H., Razavi, B., & Torok, P. (2024). Effects of livestock grazing on soil seed banks vary between regions with different climates. Journal of Agriculture, Ecosystems & Environment. 364(1), 108901. https://doi.org/10.1016/j.agee.2024.108901.
Ibrahim, E. A. (2016). Seed priming to alleviate salinity stress in germinating seeds. Journal of plant physiology192(1), 38-46.‏‏ https://10.1016/j.jplph.2015.12.011.
Ivushkin, K., Bartholomeus, H., Bregt, A. K., Pulatov, A., Kempen, B., & De Sousa, L. (2019). Global mapping of soil salinity change. Remote sensing of environment231, 111260.‏ https://doi.org/10.1016/j.rse.2019.111260.
Jia, P., Qu, G., Jia, J., Li, D., Sun, Y., & Liu, L. (2024). Long‐term Spartina alterniflora invasion simplified soil seed bank and regenerated community in a coastal marsh wetland. Journal of Ecological Applications34(1), e2754.‏
Kesbi, M. A., Erfanzadeh, R., & Fattahi, B. (2024). Similarity between soil seed bank and standing vegetation and their relationship with soil and topographical characteristics in a riparian zone. Journal of Community Ecology. 3(1), 1-13.‏ https://doi.org/10.1007/s42974-023-00180-4.
Khadem, A., Golchin, A., Mashhadi Jafarloo, Zaree, Z., & Naseri, E. (2015). Growth). L mays Zea (Corn and Availability Nutrient Soil on Soil Acidified Highly of E. Journal of Agronomy (Sazandegi & Pajouhesh).1(107): 1-7.
Li, W. Q., Xiao-Jing, L., Khan, M. A., & Gul, B. (2008). Relationship between soil grazedcteristics and halophytic vegetation in coastal region of North China. Journal of Pak J Bot40(3), 1081-90.
Litalien, A., & Zeeb, B. (2020). Curing the earth: A review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation. Science of the Total Environment6(98), 134-235.‏ https://doi.org/10.1016/j.scitotenv.2019.13.
Ma, H., Yang, H., Lü, X., Pan, Y., Wu, H., Liang, Z., & Ooi, M. K. (2015). Does high pH give a reliable assessment of the effect of alkaline soil on seed germination? A case study with Leymus chinensis (Poaceae). Journal of Plant and Soil394(2), 35-43.‏ ‏https://10.1007/s11104-015-2487-4.
Ma, M., Walck, J. L., Ma, Z., Wang, L., & Du, G. (2018). Grazing disturbance increases transient but decreases persistent soil seed bank. Journal of Ecological Applications, 28(4), 1020-1031.‏ https://doi.org/10.1002/eap.1706.
Mirmohamadali, A. (2014). Effect of soil salinity on plant distribution in Hoze Soltan Lake area. Journal of Plant Research, 27(4), 742-752. http://doi/ 20.1001.1.23832592.1393.27.4.20.4. (In Persian).
Mojtahedi, M., Niknahad, H., Hosseini, A., & Soltani, E. (2014). Investigating the diversity and density of the soil seed bank in the Atriplex cultivars at different ages. Journal of Rangeland, 1(3), 96-112. (In Persian).
Nosetto, M. D., Jobbágy, E. G., & Paruelo, J. M. (2006). Carbon sequestration in semi-arid rangelands: comparison of Pinus ponderosa plantations and grazing exclusion in NW Patagonia. Journal of Arid Environments67(1), 142-156.‏ https://doi.org/10.1016/j.jaridenv.2005.12.008.
Ooi, M. K. (2012). Seed bank persistence and climate change. Journal of Seed Science Research, 22(S1), S53-S60. ‏https://doi.org/10.1017/S0960258511000407.
Pazos, G.E., & Bertiller, M.B. (2008). Spatial patterns of the germinable soil seed bank of coexisting perennial-grass species in grazed shrublands of the Patagonian Monte. Plant Ecology198(1), https://111-120. 10.1007/s11258-007-9389-3.
Peco, B., Ortega, M., & Levassor, C. (1998). Similarity between seed bank and vegetation in Mediterranean grassland: a predictive model. Journal of Vegetation Science9(6), 815-828.‏ https://doi.org/10.2307/3237047.
Qadir, M., Oster, J.D., Schubert, S., Noble, A.D., & Sahrawat, K.L. (2007). Phytoremediation of sodic and saline‐sodic soils. Advances in agronomy96(1), 197-247.‏ https://doi.org/10.1016/S0065-2113(07)96006-X
Risch, A. C., Jurgensen, M. F., & Frank, D. A. (2007). Effects of grazing and soil micro-climate on decomposition rates in a spatio-temporally heterogeneous grassland. Plant and Soil298(2), https://191-201.‏ 10.1007/s11104-007-9354-x.
Sahab, S., Suhani, I., Srivastava, V., Chauhan, P. S., Singh, R. P., & Prasad, V. (2021). Potential risk assessment of soil salinity to agroecosystem sustainability: Current status and management strategies. Journal of Science of the Total Environment764(4), 144164.‏ https://doi.org/10.1016/j.scitotenv.2020.144164.
Shi, Y.F., Shi, S.H., Huang, X.M., Jiang, Y.S., Liu, J., Zhao, Y., & Zhang, Z. S. (2022). A global meta‐analysis of grazing effects on soil seed banks. Journal of Land Degradation & Development33(11), 1892-1900.‏ https://doi.org/10.1002/ldr.4271.
Solomon, T.B., Snyman, H.A., & Smit, G.N. (2006). Soil seed bank grazedcteristics in relation to land use systems and distance from water in a semi-arid rangeland of southern Ethiopia. South African Journal of Botany72(2), 263-271. https://doi.org/10.1016/j.sajb.2005.09.003.
Scurlock, J.M.O., Johnson, K., & Olson, R.J. (2002). Estimating net primary productivity from grassland biomass dynamics measurements. Journal of Global Change Biology, (8): 736–753.
Sparks, D. L., Singh, B., & Siebecker, M. G. (2022). Environmental soil chemistry. Elsevier.‏
Tabatabai, M. A., & Bremner, J. M. (1969). Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Journal of Soil Biology and Biochemistry1(4), 301-307.‏
Wang, W., Ge, J., Yu, X., & Li, H. (2020). Environmental fate and impacts of microplastics in soil ecosystems: Progress and perspective. Journal of Science of the Total Environment708(2), 134841.‏ https://doi.org/10.1016/j.scitotenv.2019.134841.
Yadav, P. V., Maya, K., & Zakwan, A. (2011). Seed priming mediated germination improvement and tolerance to subsequent exposure to cold and salt stress in capsicum. Research Journal of Seed Science4(3), 125-136.‏ https://doi.org/10.3923/rjss.2011.125.136.
Yadav, S. P., Bharadwaj, R., Nayak, H., Mahto, R., Singh, R. K., & Prasad, S. K. (2019). Impact of salt stress on growth, productivity and physicochemical properties of plants: A Review. Journal of Ecotoxicology and Environmental60(3), 324-349.‏ https://doi.org/10.1016/j.ecoenv.2004.06.010.
Zhao, Y., Wang, G., Zhao, M., Wang, M., Hu, N., Jiang, M., & Qin, L. (2021). The potentials of wetland restoration after farming differ between community types due to their differences in seed limit and salt tolerances in the Songnen Plain, China. Journal of Ecological Indicators131(3), 108145.‏ https://doi.org/10.1016/j.ecolind.2021.108145.
Zheng, Q., Hu, Y., Zhang, S., Noll, L., Böckle, T., Dietrich, M., & Wanek, W. (2019). Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity. Journal of Soil Biology and Biochemistry136(1), 107521.‏ https://doi.org/10.1016/j.soilbio.2019.107521.
Zylberberg, T., Rotem, G., & Ziv, Y. (2024). Evaluating soil seed banks of phosphate mining restoration in the hyper‐arid Negev desert. Journal of Restoration Ecology32(2), e13938.‏