نشریه علمی - پژوهشی مرتع و آبخیزداری

نوع مقاله : مقاله پژوهشی

نویسنده

گروه مخاطرات زیست‌محیطی، پژوهشکده سوانح طبیعی، تهران، ایران

10.22059/jrwm.2024.377135.1767

چکیده

زمین‌لغزش‌ها یکی از مخرب‌ترین نوع حرکات دامنه‌ای هستند که در این پژوهش به بررسی استعداد وقوع آن‌ها در حوزه آبخیز چاکرود شهرستان سیاهکل استان گیلان با استفاده از برنامه تریگرز (TRIGRS) پرداخته شده است. این برنامه قادر است مناطق مستعد بروز زمین‌لغزش‌های کم‌عمق ناشی از بارندگی و اثر بارندگی و رواناب بر پایداری دامنه را مورد بررسی قرار ‌دهد. در پژوهش حاضر، ابتدا نقشه‌های موردنیاز برنامه، شامل مدل ارتفاع رقومی، شیب توپوگرافی، جهت جریان رواناب سطحی، خصوصیات زمین‌شناسی مهندسی و تیپ خاک، ضخامت خاک، عمق سطح آب زیرزمینی و داده‌های بارش تهیه شد. در ادامه در سیستم اطلاعات جغرافیایی نقشه‌های تولید شده به‌صورت رستر، به فایل‌های متنی مورد استفاده در برنامه تریگرز تبدیل شده است. با اجرای برنامه، برای هر سلول حداقل ضریب ایمنی پایداری، عمق لغزش و فشار آب منفذی در آن عمق محاسبه شده و به‌صورت فایل متنی ارائه می‌گردد که مجدداً با استفاده از نرم‌افزار GIS این فایل متنی به نقشه رستری تبدیل می‌شود؛ این نقشه توزیع مکانی حداقل ضریب اطمینان و پهنه‌بندی پتانسیل وقوع زمین‌لغزش برای حوضه موردمطالعه می‌باشد. نتایج این تحقیق نشان داد که این برنامه با دقت بالایی مناطق مستعد وقوع زمین‌لغزش را پس از مدل‌سازی نفوذ و مسیریابی رواناب پیش‌بینی کرده است. این مناطق 37/1395 هکتار معادل 9/8 درصد از مساحت حوزه آبخیز را شامل می‌شود و بر قسمت‌هایی از زون 2، متشکل از خاک‌های با شیل زیاد و حاوی کانی‌های رسی فراوان و زون 3 شامل خاک‌ها و رسوبات لغزشی که در دامنه‌های پرشیب و با ضخامت زیاد خاک است، منطبق می‌باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Using the TRIGRS program in the analysis of landslide probability (Case study: Chakrod watershed, Gilan)

نویسنده [English]

  • Mohammad Reza Mehrpouya

Environmental Hazards Group, Natural Disasters Research Institute, Tehran, Iran

چکیده [English]

Landslides are one of the most destructive types of domain movements, and in this research, the probability of their occurrence in the Chakrod watershed of Siahkal city, Gilan province has been investigated using the TRIGRS program. This program is able to investigate areas prone to shallow landslides caused by rainfall and the effect of rainfall and runoff on the stability of the domain. In the present research, first, the required maps of the program, including the digital elevation model, topographic slope, surface runoff flow direction, engineering geological characteristics and soil type, soil thickness, depth of underground water level and precipitation data were prepared. Next, in the geographic information system (GIS), the maps produced in raster form have been converted into text files used in the TRIGRS program. By running the program, for each cell, the minimum stability safety factor, sliding depth and pore water pressure at that depth are calculated and presented in the form of a text file, which is again converted into a raster map using GIS software; This spatial distribution map is the minimum confidence factor and landslide potential zoning for the studied basin. The results of this research showed that this program has accurately predicted landslide prone areas after infiltration modeling and runoff routing. These areas include 1395.37 hectares equivalent to 8.9% of the area of the watershed and on parts of zone 2, consisting of soils with a lot of shale and containing a lot of clay minerals, and zone 3 including soils and sliding sediments that are on steep slopes and with The thickness of the soil is high, it is consistent.

کلیدواژه‌ها [English]

  • TRIGRS program
  • : landslide prediction
  • shallow landslide
  • Safety factor
Abdinezhad, A., Yamani, M., Hassanpour, J., Goorabi, A. & Karimi AhmadAbad, M. (2023). Analysis of occurrence potential of the earth/debris flow and shallow landslides using the TRIGRS model (Case study: babolrood Basin, Mazandaran). Journal of Spatial Analysis Environmental Hazards, 10(2), 21-44. (In Persian)
Alvioli, M., Melillo, M., Guzzetti, F., Rossi, M., & Palazzi, E., Von Hardenberg, J., Brunetti, M,T. & Peruccacci, S. )2018(. Implications of climate change on landslide hazard in Central Italy. Science of the Total Environment, 630,1528–1543.
Baum, R.L., Godt, J.W. & Savage, W.Z. (2010). Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration. Journal of Geophysical Research, 115(3), 1-26.
Baum, R.L., Savage, W.Z. & Godt, J.W. (2002). TRIGRS—A Fortran program for transient rainfall infiltration and grid-based regional slope stability analysis. U.S. Geological Survey Open-File Report 2002-0424.
Baum, R.L., Savage, W.Z. & Godt, J.W. (2002). TRIGRS—A Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis, Version 2.0. U.S. Geological Survey Open-File Report 2008– 1159.
Catani, F., Segoni, S. & Falorni, G. (2010). An empirical geomorphology-based approach to the spatial prediction of soil thickness at catchment scale. Water Resources Research 46, W05508.
Ciurleo, M., Ferlisi, S., Foresta, V., Mandaglio M.C. & Moraci, N. (2022). Landslide Susceptibility Analysis by Applying TRIGRS to a Reliable Geotechnical Slope Model. Geosciences (Switzerland), 12(1). https://doi.org/10.3390/geosciences12010018.
Delmonaco, G., Leoni, G., Margottini, C., Puglisi C. & Spizzichino, D. (2003). Large scale debris flow hazard assessment: a geotechnical approach and GIS modeling. Natural Hazards and Earth System Sciences 3(5), 443–455.
Freeze, R. A. & Cherry, J. A. (1979). Groundwater. Prentice-Hall, Inc., Englewood Cliffs , New Jersey . 604 pp.
Goetz, J. N., Guthrie, R. H. & Brenning, A. (2011). Integrating physical and empirical landslide susceptibility models using generalized additive models. Journal of Geomorphology 129 (3-4), 376-386.‏
Grelle, G., Soriano, M., Revellino, P., Guerriero, L., Anderson, M.G., Diambra, A., Fiorillo, F., Esposito, L., Diodato, N. & Guadagno, F.M. (2014). Space-Time Prediction of Rainfall-Induced Shallow Landslides through a Combined Probabilistic/Deterministic Approach, Optimized for Initial Water Table Conditions. Bulletin of Engineering Geology and the Environment, 73(3), 877-890.
Hassanzadeh Nafuti, M. (2000). Landslide hazard zonation in Shalmanrood basin in Gilan province. Master dissertation, Natural Resources Faculty of Tehran University, Tehran. (In Persian)
Liao, Z., Hong, Y., Kirschbaum, D., Adler, R.F., Gourley, J.J. & Wooten, R. (2011). Evaluation of TRIGRS (transient rainfall infiltration and grid-based regional slope-stability analysis)’s predictive skill for hurricanetriggered landslides: a case study in macon county, north carolina, Nat. Hazards, 58(1), 325-339.
Nahayo, L., Mupenzi, C., Habiyaremye, G., Kalisa, E., & Udahogora, M.& Nzabarinda, V., & Li, L. (2019). Landslides hazard mapping in Rwanda using bivariate statistical index method. Environmental Engineering Science, 36(8), 892-902.
O’Callaghan, J.F. & Mark, D.M. (1984).  The Extraction of Drainage Networks from Digital Elevation Data. Computer Vision, Graphics, and Image Processing, 28(3), 323-344.
Ocakoglu, F., Gokceoglu, C. & Ercanoglu, M. (2002). Dynamics of a complex mass movement triggered by heavy rainfall: a case study from NW Turkey. Geomorphology, 42(3), 329-341.
Park, D.W., Nikhil, N.V. & Lee S.R. (2013). Landslide and debris flow susceptibility zonation using TRIGRS for the 2011 Seoul landslide event. Natural Hazards and Earth System Science, 1(3), 2547-2587.
Pourghasemi, H. R. & Kerle, N. (2016). Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province, Iran. Environmental Earth Sciences, 75(3).
Sadeghi, S., Shoaei, Gh. & Nikude, M. (2014). Attitudes to  prediction of time and place of occurrence of shallow landslides caused by rainfall in Nekarod Basin. Paper presented at the 18th conference of the Geological Society of Iran. Tehran, Iran.
Schilirò, L., Cepeda, J., Devoli, G. & Piciullo, L. (2021). Regional Analyses of Rainfall-Induced Landslide Initiation in Upper Gudbrandsdalen (South-Eastern Norway) Using TRIGRS Model. Geosciences, 11(1), 35.
Schilirò, L., Esposito, C. & Scarascia Mugnozza, G. (2015). Evaluation of shallow landslide triggering scenarios through a physically-based approach: an example of application in the southern Messina area (north-eastern Sicily, Italy). Natural Hazards and Earth System Science, 3(5), 2975-3022.
Vieira, B. C., Fernandes, N. F., Augusto Filho, O., Martins, T. D.& Montgomery, D. R. (2018). Assessing shallow landslide hazards using the TRIGRS and SHALSTAB models, Serra do Mar, Brazil. Environmental earth sciences, 77(6), 1-15.
Vieira, B.C., Fernandes, N.F. & Filho, O.A. (2010). Shallow landslide prediction in the Serra do Mar, S˜ao Paulo, Brazil. Natural Hazards and Earth System Science, 10(9), 1829–1837.
Viet, T.T., Lee, G., Thu, T.M. & An, H. (2017). Effect of Digital Elevation Model Resolution on Shallow Landslide Modeling Using TRIGRS. Natural Hazards Review, 18 (2).