نشریه علمی - پژوهشی مرتع و آبخیزداری

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه احیای مناطق خشک و کوهستانی، دانشکده منابع طبیعی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

10.22059/jrwm.2024.379793.1777

چکیده

در این پژوهش پس از ساخت کپسول‌های کشت از صفحات مشبک زیست‌تخریب‌پذیر با بسترهای باکتری، هیدروژل و نانورس که از اختلاط باکتری، هیدروژل و نانورس و انتقال نشاهای تولید شده به کپسول‌ها به‌عنوان کشت کپسولی در مقایسه با گلدان‌های نایلونی مرسوم در کشت متداول که به‌عنوان شاهد بودند در قالب طرح کاملاً تصادفی با دو عامل نوع کشت (کپسولی و متداول) و نوع کپسول (هیدروژل، باکتری و نانورس) در گلخانه دانشکده منابع طبیعی دانشگاه تهران انجام گرفت. نتایج حاصل از این پژوهش، بیانگر تأثیر معنی‌دار نوع کشت کپسولی هیدروژل بر تمامی صفات موفورلوژیک موردبررسی گیاه بود؛ به‌طوری‌که اندازه طول ساقه با افزایش6/42 درصد، قطر یقه 8/14 درصد و زیست‌توده خشک ریشه و اندام هوایی نیز به ترتیب با افزایش 2/7 و 7/23 درصد، بالاترین مقادیر را به خود اختصاص دادند. علاوه براین، در مورد برخی صفات فیزیولوژیک موردبررسی گیاه، میزان کلروفیل نیز تحت تأثیر نوع کشت کپسولی قرار گرفت و غلظت آن در کشت کپسولی هیدروژل، باکتری و نانورس به ترتیب افزایش 8/56، 1/32 و 9/36 درصدی را نشان دادند. همچنین، نتایج مقایسه میانگین‌ها نشان داد که غلظت پرولین در گیاهان رشد یافته در کپسول هیدروژل نسبت به کشت متداول 20/33 درصد کاهش یافت. این روند کاهش در محتوای قند محلول گیاهان رشد کرده در کپسول هیدروژل نسبت به کشت متداول 78/20 به دست آمد. به‌طور‌کلی نتایج این پژوهش بیانگر تفاوت نوع کشت موردبررسی بر صفات مرفولوژیک و فیزیولوژیک گونه Salsola imbricata به‌عنوان یک گیاه مطلوب به‌منظور احیای مراتع مناطق خشک بود و امکان استفاده از نوع کشت کپسولی به‌عنوان جایگزینی مناسب برای کشت معمولی گیاه در خاک را نشان داد.

کلیدواژه‌ها

عنوان مقاله [English]

Comparison some morphological and physiological properties of Salsola imbricata planted in capsule cultivation method with hydrogel, nanoclay and bacteria substrates and common cultivation method in soil

نویسندگان [English]

  • Parviz Alizadeh
  • ِAli Tavili
  • Mohammad Ali Zare Chahouki
  • Mohammad Jafari

Department of Reclamation of Arid and Mountainous Regions, Faculty of Natural Resources, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

چکیده [English]

In this research, after making culture capsules from biodegradable mesh plates with bacterial, hydrogel and nanoclay substrates, which is from mixing bacteria, hydrogel and nanoclay and transferring the seedlings produced to the capsules as capsule culture compared to pots. Conventional nylon plants in conventional cultivation, which were used as controls, were carried out in the form of a completely randomized design with the two factors of cultivation type (capsule and conventional) and capsule type (hydrogel, bacteria and nanoclay) in the greenhouse of the Faculty of Natural Resources, University of Tehran. The results of this research showed the significant effect of the type of hydrogel capsule culture on all the morphological traits of the investigated plant; So that the length of the stem with an increase of 42.6%, the diameter of the collar by 14.8% and the dry biomass of the root and the aerial organs with an increase of 7.2% and 23.7%, respectively, have the highest values. They gave. In addition, regarding some physiological traits of the investigated plant, the amount of chlorophyll was also affected by the type of capsule culture and its concentration in capsule culture of hydrogel, bacteria and nanoclay showed an increase of 56.8%, 32.1% and 36.9% respectively. They gave. Also, the results of comparing the averages showed that the concentration of proline in plants grown in hydrogel capsules decreased by 33.20% compared to conventional culture. This reduction process in the soluble sugar content of plants grown in hydrogel capsules was obtained compared to the conventional culture of 20.78.

کلیدواژه‌ها [English]

  • Bacteria
  • capsule culture
  • hydrogel
  • nanoclay
  • Salsola imbricata
Abd El-Aziz, G. H., Ibrahim, A. S., & Fahmy, A. H. (2022). Using environmentally friendly hydrogels to alleviate the negative impact of drought on plant. Open Journal of Applied Sciences, 12(1), 111-133.
Ahmed, E. M., El-Tohamy, W. A., El-Abagy, H. M. H., Aggor, F. S., & Nada, S. S. (2015). Response of snap bean plants to super absorbent hydrogel treatments under drought stress conditions. Current Science International, 4(3), 467-472.
Albalasmeh, A. A., Mohawesh, O., Gharaibeh, M. A., Alghamdi, A. G., Alajlouni, M. A., & Alqudah, A. M. (2022). Effect of hydrogel on corn growth, water use efficiency, and soil properties in a semi-arid region. Journal of the Saudi Society of Agricultural Sciences, 21(8), 518-524.
Alghamdi, S. A., Alharby, H. F., Abdelfattah, M. A., Mohamed, I. A., Hakeem, K. R., Rady, M. M., & Shaaban, A. (2023). Spirulina platensis-inoculated humified compost boosts rhizosphere soil hydro-physico-chemical properties and Atriplex nummularia forage yield and quality in an arid saline calcareous soil. Journal of Soil Science and Plant Nutrition, 23(2), 2215-2236.
Arabi, Z., Kaboosi, K., & Rezvan Talab, N. (2014). Effect of different levels of irrigation and superabsorbent hydrogel on morphological characteristics, yield and essential oil of anise plant. Scientific Journal of Medicinal Plants. 8(4), 51-66. (In Persian).
Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant physiology, 24(1), 1.
Bakhshandeh, E., Pirdashti, H., Shahsavarpour Lendeh, K., Gilani, Z., Yaghoubi Khanghahi, M., & Crecchio, C. (2020). Effects of plant growth promoting microorganism’s inoculums on mineral nutrition, growth and productivity of rice (Oryza sativa L.). Journal of Plant Nutrition, 43(11), 1643-1660.
Bashan, Y., de-Bashan, L. E., Prabhu, S. R., & Hernandez, J. P. (2014). Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant and soil, 378, 1-33.
Bates, L. S., Waldren, R. P. A., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and soil39, 205-207.
Chirino, E., Vilagrosa, A., & Vallejo, V. R. (2011). Using hydrogel and clay to improve the water status of seedlings for dryland restoration. Plant and Soil, 344, 99-110.
Chuckran, P. F., Reibold, R., Throop, H. L., & Reed, S. C. (2020). Multiple mechanisms determine the effect of warming on plant litter decomposition in a dryland. Soil Biology and Biochemistry, 145, 107799.
Collins, S. L., Belnap, J., Grimm, N. B., Rudgers, J. A., Dahm, C. N., D'odorico, P., ... & Wolf, B. O. (2014). A multiscale, hierarchical model of pulse dynamics in arid-land ecosystems. Annual Review of Ecology, Evolution, and Systematics, 45(1), 397-419.
Daneshmandi, S. M. & Azizi, M. (2009). Study the effect of drought stress and super absorbent polymer on some quantitative and qualitative characteristics of basil. In Proceedings of the 6th Congress of Iranian Horticultural Science, July 13 - 16, University of Guilan, Rasht, Iran. (In Persian)
Dehkordi, D. K., & Seyyedboveir, S. (2013). Evaluation of super AB A 200 Superabsorbent on water use efficiency and yield response factor of SCKaroun701 corn under deficit irrigation. Advances in Environmental Biology, 4615-4623.
DeVilleneuve, S., Kelly, A., Miyanaka, N., Shanmuhasundaram, T., Murphree, P., & Wyatt, B. M. (2023). Impacts of vegetation and topsoil removal on soil erosion, soil moisture, and infiltration. Agrosystems, Geosciences & Environment, 6(3), e20402.
Diógenes, M. F. S., Mendonça, V., de Medeiros Mendonça, L. F., de Moura, E. A., Reges, K. D. S. L., de Oliveira, L. M., & de Oliveira, A. M. F. (2022). Use of hydrogel in the irrigation management of white pitaya (Hylocereus undatus) seedlings: Biometrics and accumulation of organic and inorganic solutes. Semina: Ciências Agrárias, 43(2), 491-508.
El Bergui, O., Abouabdillah, A., Bourioug, M., Schmitz, D., Biel, M., Aboudrare, A., ... & Bouabid, R. (2023). Innovative solutions for drought: evaluating hydrogel application on onion cultivation (Allium cepa) in Morocco. Water, 15(11), 1972.
El‐Asmar, J., Jaafar, H., Bashour, I., Farran, M. T., & Saoud, I. P. (2017). Hydrogel banding improves plant growth, survival, and water use efficiency in two calcareous soils. CLEAN–Soil, Air, Water, 45(7), 1700251.
Elnaggar, A., El-Keblawy, A., Mosa, K. A., & Soliman, S. (2018). Drought tolerance during germination depends on light and temperature of incubation in Salsola imbricata, a desert shrub of Arabian deserts. Flora, 249, 156-163.
Galeş, D. C., Trincă, L. C., Cazacu, A., Peptu, C. A., & Jităreanu, G. (2016). Effects of a hydrogel on the cambic chernozem soil's hydrophysic indicators and plant morph physiological parameters. Geoderma, 267, 102-111.
Ghias, S., Shirmardi, M., Meftahizadeh, H., & Dehestani Ardakani, M. (2022). Effect of bio char and Hydrogel on Morph physiological and Biochemical Characteristics of Common Sage (Salvia officinalis L.) under Drought Stress. Plant Productions, 45(1), 67-80.
Ghimire, R., & Khanal, B. R. (2020). Soil organic matter dynamics in semiarid agroecosystems transitioning to dryland. PeerJ, 8, e10199.
Gundala, S. R. (2014). Phytocomplexity: Implications for Development of Novel Anticancer Therapeutics Using Dietary Agents.
Gupta, G., Parihar, S.S., Ahirwar, N.K., Snehi, S.K. & Singh, V. (2015). Plant growth promoting rhizobacteria (PGPR): Current and future prospects for development of sustainable agriculture. J. Microb. Biochem. Technol. 2015, 7, 96–102.
Hamzei, J., & Babaei, M. (2017). Study of quality and quantity of yield and land equivalent ratio of sunflower in intercropping series with bean.
Huang JianPing, H. J., Yu HaiPeng, Y. H., Guan XiaoDan, G. X., Wang Guoyin, W. G., & Guo RuiXia, G. R. (2016). Accelerated dryland expansion under climate change.
Iqbal, B., Li, G., Alabbosh, K. F., Hussain, H., Khan, I., Tariq, M., ... & Ahmad, N. (2023). Advancing environmental sustainability through microbial reprogramming in growth improvement, stress alleviation, and phytoremediation. Plant Stress, 100283.
John, D. A., & Babu, G. R. (2021). Lessons from the aftermaths of green revolution on food system and health. Frontiers in sustainable food systems, 5, 644559.
John, R. P., Tyagi, R. D., Brar, S. K., Surampalli, R. Y., & Prévost, D. (2011). Bio-encapsulation of microbial cells for targeted agricultural delivery. Critical reviews in biotechnology, 31(3), 211-226.
Johnson, M. S. & Woodhouse, J. (1990). Effect of superabsorbent polymers on efficiency of water use by crop seeding. Science of Food and Agriculture Journal 52: 431-434.
Kishor, P.B.K, & Sreenivasulu, N. (2014). Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant, Cell and Environment, 37: 300-11.
Kolesnikov, L. E., Uspenskaya, M. V., Kremenevskaya, M. I., Orlova, A. G., Zuev, E. V., & Kolesnikova, Y. R. (2021). Increase in the Yield of Cereals and Decrease in the Harmfulness of Pathogens When Using Acrylic Hydrogel and Protein Growth Stimulant. Russian Agricultural Sciences, 47, 377-385.
Li, T., Dong, J., & Yuan, W. (2020). Effects of precipitation and vegetation cover on annual runoff and sediment yield in Northeast China: A preliminary analysis. Water Resources, 47, 491-505.
Lozano-García, B., Muñoz-Rojas, M., & Parras-Alcántara, L. (2017). Climate and land use changes effects on soil organic carbon stocks in a Mediterranean semi-natural area. Science of the Total Environment, 579, 1249-1259.
Lynsey Hart (2020). How to Make Liquid Nanoclay.Available online: https://nanografi.com/blog/how-to-make-liquid-nanoclay/ (accessed on 2 February 2024).
Malusá, E., Sas-Paszt, L., & Ciesielska, J. (2012). Technologies for beneficial microorganism’s inoculant used as bio fertilizers. The scientific world journal, 2012(1), 491206.
McCready, R. M., Guggolz, J., Silviera, V., & Owens, H. S. (1950). Determination of starch and amylose in vegetables. Analytical chemistry22(9), 1156-1158.
Milivojević, M., Popović, A., Pajić-Lijaković, I., Šoštarić, I., Kolašinac, S., & Stevanović, Z. D. (2023). Alginate gel-based carriers for encapsulation of carotenoids: on challenges and applications. Gels, 9(8), 620.
Miller, J. J., Owen, M. L., Drury, C. F., & Chanasyk, D. S. (2022). Short-term legacy effects of feedlot manure amendments on surface soil CO2 efflux under irrigated silage barley in Southern Alberta. Canadian Journal of Soil Science, 102(2), 309-317.
Moradi, M., Torabi Giglou, M., & Ahadzadeh, M. (2023). Effects of ascorbic acid on some morpho-physiological traits of basil (Ocimum basilicum L.) under drought stress. Iranian Journal of Medicinal and Aromatic Plants Research, 39(4), 568-588. In Persian.
Muñoz-Rojas, M., Abd-Elmabod, S. K., Zavala, L. M., De la Rosa, D., & Jordán, A. (2017). Climate change impacts on soil organic carbon stocks of Mediterranean agricultural areas: A case study in Northern Egypt. Agriculture, ecosystems & environment, 238, 142-152.
Nisar, N., Li, L., Lu, S., Khin, N. C., & Pogson, B. J. (2015). Carotenoid metabolism in plants. Molecular plant, 8(1), 68-82.
Nishu, S. D., No, J. H., & Lee, T. K. (2022). Transcriptional response and plant growth promoting activity of Pseudomonas fluorescens DR397 under drought stress conditions. Microbiology Spectrum10(4), e00979-22.
Obour, A., Stahlman, P., & Thompson, C. (2017). Long-term residual effects of feedlot manure application on crop yield and soil surface chemistry. Journal of Plant Nutrition, 40(3), 427-438.
Pacholczak, A., Nowakowska, K., & Monder, M. J. (2023). Starch-based superabsorbent enhances the growth and physiological traits of ornamental shrubs. Agriculture, 13(10), 1893.
Pandey, R.K., Maranville, J.W. & Admou, A. (2000). Deficit irrigation and nitrogen effects on maize in sahelian environment. I: Grain yield and yield components. Agri. Water Man. 46(1): 1-13.
Pedroza-Sandoval, A., Yáñez-Chávez, L. G., Sánchez-Cohen, I., Samaniego-Gaxiola, J. A., & Trejo-Calzada, R. (2017). Hydrogel, biocompost and its effect on photosynthetic activity and production of forage maize plants (Zea mays L.). Acta Agronómica, 66(1), 63-68.
Reynolds, J. F., Smith, D. M. S., Lambin, E. F., Turner, B. L., Mortimore, M., Batterbury, S. P., ... & Walker, B. (2007). Global desertification: building a science for dryland development. science, 316(5826), 847-851.
Rocha, B. C. P., Martinez, H. E. P., Ribeiro, C., & Brito, D. S. (2023). Nitrogen metabolism in coffee plants subjected to water deficit and nitrate doses. Brazilian Archives of Biology and Technology, 66, e23210060.
Saeedi, M., Nasireh, B., Khormi wafa, M., Sharifi, R., Khushkhoi, Shahab. (2021). The effect of different seed pretreatment methods on the agronomic characteristics of oilseed flax under drought stress conditions after flowering in Kermanshah region. 31(3), 227-247.
Schoebitz, M., López, M. D., & Roldán, A. (2013). Bio encapsulation of microbial inoculants for better soil–plant fertilization. A review. Agronomy for sustainable development, 33, 751-765.
Sepehri, S., Abdoli, S., Asgari Lajayer, B., Astatkie, T., & Price, G. W. (2023). Changes in phytochemical properties and water use efficiency of peppermint (Mentha piperita L.) using superabsorbent polymer under drought stress. Scientific Reports, 13(1), 21989.
Sethi, S., Singh, A., Medha, Thakur, S., Kaith, B. S., & Khullar, S. (2023). Natural polymer-based nanocomposite hydrogels as environmental remediation devices. In Handbook of Green and Sustainable Nanotechnology: Fundamentals, Developments and Applications (pp. 407-441). Cham: Springer International Publishing.
Shiran, B., & Hertmani, A. (2021). The effect of Mycorrhizal fungus symbiosis on morphological traits, proline and gene expression under drought stress. Modern Genetics Quarterly, 16(4), 373-385.
Sodek L. Metabolismo do nitrogênio. Fisiologia Vegetal. (2004). Rio de Janeiro: Guanabara Koogan, 94-113 p.
Soliman, D. M., Elkaramany, M. F., & El-sayed, I. M. (2024). Using hydrogel polymers to mitigate the negative impact of salinity stress on Calendula officinalis plants. Egyptian Journal of Chemistry, 67(2), 57-77.
Stamenković, S., Beškoski, V., Karabegović, I., Lazić, M., & Nikolić, N. (2018). Microbial fertilizers: A comprehensive review of current findings and future perspectives. Spanish Journal of Agricultural Research, 16(1), 21.
Szopa, D., Mielczarek, M., Skrzypczak, D., Izydorczyk, G., Mikula, K., Chojnacka, K., & Witek-Krowiak, A. (2022). Encapsulation efficiency and survival of plant growth-promoting microorganisms in an alginate-based matrix–A systematic review and protocol for a practical approach. Industrial crops and products, 181, 114846.
Verma, S. K., Kingsley, K., Bergen, M., English, C., Elmore, M., Kharwar, R. N., & White, J. F. (2018). Bacterial endophytes from rice cut grass (Leersia oryzoides L.) increase growth, promote root gravitropic response, stimulate root hair formation, and protect rice seedlings from disease. Plant and Soil, 422, 223-238.
Vivek, M. S., Chandravanshi, P., Nataraju, S. P., Salimath, S., & Kumar Naik, A. H. (2020). Effect of hydrogel on chlorophyll content and chlorophyll stability index of groundnut (Arachis hypogaea L.) under rainfed condition. Int J Chem Stud, 8(3), 2211-2215.
Yang, X., Zhang, Y., Liang, J., & Zhang, X. (2023). Effect of soil configuration on alfalfa growth under drought stress. Sustainability15(6), 5400.
Zaitchik, B. F., Rodell, M., Biasutti, M., & Seneviratne, S. I. (2023). Wetting and drying trends under climate change. Nature Water, 1(6), 502-513.
Zhang, H., B., Thomas, B. W., Beck, R., Willms, W. D., Li, Y., & Hao, X. (2019). Short term recovery of vegetation and soil after abandoning cultivated mixed grass prairies in Alberta, Canada. Catena, 173, 321-329.
Zhang, Z., Li, R., Zhao, C., & Qiang, S. (2021). Reduction in weed infestation through integrated depletion of the weed seed bank in a rice-wheat cropping system. Agronomy for Sustainable Development, 41(1), 10.